Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Radiother Oncol. 2024 Dec;201:110542. doi: 10.1016/j.radonc.2024.110542. Epub 2024 Sep 17.
BACKGROUND/PURPOSE: The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions.
We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics.
We identified 56 articles published from 2015 to 2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50 %), followed by image-synthesis (13 %), and multiple applications simultaneously (11 %). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32 %). Imaging data was used in 91 % of studies, while only 13 % incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60 %), with Monte Carlo dropout being the most commonly implemented UQ method (32 %) followed by ensembling (16 %). 55 % of studies did not share code or datasets.
Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, we identified a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.
背景/目的:人工智能(AI)在放射治疗(RT)中的应用正在迅速扩展。然而,临床医生对 AI 模型的信任明显不足,这凸显了需要有效的不确定性量化(UQ)方法。本研究旨在综述 RT 中与 UQ 相关的现有文献,确定改进领域,并确定未来方向。
我们遵循 PRISMA-ScR 范围综述报告指南。我们利用人群(人类癌症患者)、概念(AI UQ 的利用)、背景(放射治疗应用)框架来构建我们的搜索和筛选过程。我们进行了一项系统搜索,涵盖了七个数据库,截至 2024 年 1 月,还进行了手动策展。我们的搜索共产生了 8980 篇初步审查的文章。手稿筛选和数据提取在 Covidence 中进行。数据提取类别包括一般研究特征、RT 特征、AI 特征和 UQ 特征。
我们确定了 2015 年至 2024 年期间发表的 56 篇文章。代表了 10 个 RT 应用领域;大多数研究评估了自动勾画(50%),其次是图像合成(13%)和同时进行多种应用(11%)。代表了 12 个疾病部位,无论应用空间如何,头颈部癌症都是最常见的疾病部位(32%)。91%的研究使用了成像数据,而只有 13%的研究纳入了 RT 剂量信息。大多数研究侧重于将 UQ 的主要应用作为故障检测(60%),最常实施的 UQ 方法是蒙特卡罗随机抽样(32%),其次是集成(16%)。55%的研究没有共享代码或数据集。
我们的综述表明,除了自动勾画之外,RT 应用的 UQ 多样性不足。此外,我们还发现需要研究额外的 UQ 方法,例如一致性预测。我们的结果可能会激励制定 RT 中 UQ 报告和实施的指南。