Lee Hyeong Hun, Kim Hyeonjin
Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.
Department of Medical Sciences, Seoul National University, Seoul, Republic of Korea.
Magn Reson Med. 2022 Jul;88(1):38-52. doi: 10.1002/mrm.29214. Epub 2022 Mar 28.
To develop a Bayesian convolutional neural network (BCNN) with Monte Carlo dropout sampling for metabolite quantification with simultaneous uncertainty estimation in deep learning-based proton MRS of the brain.
Human brain spectra were simulated using basis spectra for 17 metabolites and macromolecules (N = 100 000) at 3.0 Tesla. In addition, actual in vivo spectra (N = 5) were modified by adjusting SNR and linewidth with increasing severity of spectral degradation (N = 50). A BCNN was trained on the simulated spectra to generate a noise-free, line-narrowed, macromolecule signal-removed, metabolite-only spectrum from a typical human brain spectrum. At inference, each input spectrum was Monte Carlo dropout sampled (50 times), and the resulting mean spectrum and variance spectrum were used for metabolite quantification and uncertainty estimation, respectively.
Using the simulated spectra, the mean absolute percent errors of the BCNN-predicted metabolite content were < 10% for Cr, Glu, Gln, mI, NAA, and Tau (< 5% for Glu, NAA, and mI). For all metabolites, the correlations (r's) between the ground-truth error and BCNN-predicted uncertainty ranged 0.72-0.94 (0.83 ± 0.06; p < 0.001). Using the modified in vivo spectra, the extent of variation in the estimated metabolite content against the increasing severity of spectral degradation tended to be smaller with BCNN than with linear combination of model spectra (LCModel). Overall, the variation in metabolite content tended to be more highly correlated with the uncertainty from BCNN than with the Cramér-Rao lower-bounds from LCModel (0.938 ± 0.019 vs. 0.881 ± 0.057 [p = 0.115]).
The BCNN with Monte Carlo dropout sampling may be used in deep learning-based MRS for the estimation of uncertainty in the machine-predicted metabolite content, which is important in the clinical application of deep learning-based MRS.
开发一种基于蒙特卡洛随机失活采样的贝叶斯卷积神经网络(BCNN),用于在基于深度学习的脑质子磁共振波谱(MRS)中进行代谢物定量分析,并同时估计不确定性。
使用17种代谢物和大分子的基础谱在3.0特斯拉下模拟人脑谱(N = 100000)。此外,通过随着谱降解严重程度增加调整信噪比和线宽来修改实际体内谱(N = 5),生成不同程度谱降解的体内谱(N = 50)。在模拟谱上训练BCNN,以从典型人脑谱生成无噪声、线变窄、去除大分子信号的仅代谢物谱。在推理时,对每个输入谱进行蒙特卡洛随机失活采样(50次),所得平均谱和方差谱分别用于代谢物定量分析和不确定性估计。
使用模拟谱时,BCNN预测的代谢物含量的平均绝对百分比误差,对于肌酸(Cr)、谷氨酸(Glu)、谷氨酰胺(Gln)、肌醇(mI)、N-乙酰天门冬氨酸(NAA)和牛磺酸(Tau)小于10%(对于Glu、NAA和mI小于5%)。对于所有代谢物,真实误差与BCNN预测的不确定性之间的相关性(r值)范围为0.72 - 0.94(0.83±0.06;p < 0.001)。使用修改后的体内谱时,与基于模型谱的线性组合(LCModel)相比,随着谱降解严重程度增加,BCNN估计的代谢物含量变化程度往往更小。总体而言,代谢物含量的变化与BCNN的不确定性之间的相关性往往高于与LCModel的克拉美 - 罗下界之间的相关性(0.938±0.019对0.881±0.057 [p = 0.115])。
具有蒙特卡洛随机失活采样的BCNN可用于基于深度学习的MRS中,以估计机器预测的代谢物含量的不确定性,这在基于深度学习的MRS临床应用中很重要。