Suppr超能文献

利用带有机器学习模型的媒体文章进行传染病爆发预测。

Infectious disease outbreak prediction using media articles with machine learning models.

机构信息

Department of Data-Centric Problem Solving Research, Korea Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea.

Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Korea.

出版信息

Sci Rep. 2021 Feb 24;11(1):4413. doi: 10.1038/s41598-021-83926-2.

Abstract

When a newly emerging infectious disease breaks out in a country, it brings critical damage to both human health conditions and the national economy. For this reason, apprehending which disease will newly emerge, and preparing countermeasures for that disease, are required. Many different types of infectious diseases are emerging and threatening global human health conditions. For this reason, the detection of emerging infectious disease pattern is critical. However, as the epidemic spread of infectious disease occurs sporadically and rapidly, it is not easy to predict whether an infectious disease will emerge or not. Furthermore, accumulating data related to a specific infectious disease is not easy. For these reasons, finding useful data and building a prediction model with these data is required. The Internet press releases numerous articles every day that rapidly reflect currently pending issues. Thus, in this research, we accumulated Internet articles from Medisys that were related to infectious disease, to see if news data could be used to predict infectious disease outbreak. Articles related to infectious disease from January to December 2019 were collected. In this study, we evaluated if newly emerging infectious diseases could be detected using the news article data. Support Vector Machine (SVM), Semi-supervised Learning (SSL), and Deep Neural Network (DNN) were used for prediction to examine the use of information embedded in the web articles: and to detect the pattern of emerging infectious disease.

摘要

当一种新出现的传染病在一个国家爆发时,它会对人类的健康状况和国家经济造成严重的破坏。因此,需要了解哪些疾病会新出现,并为此做好准备。许多不同类型的传染病正在出现并威胁着全球人类的健康状况。因此,检测新发传染病的模式至关重要。然而,由于传染病的流行是零星且迅速的,因此很难预测一种传染病是否会出现。此外,积累与特定传染病相关的数据并不容易。出于这些原因,需要找到有用的数据,并利用这些数据建立预测模型。互联网每天发布大量文章,迅速反映当前待决问题。因此,在这项研究中,我们从 Medisys 上积累了与传染病相关的互联网文章,以探讨新闻数据是否可以用于预测传染病的爆发。收集了 2019 年 1 月至 12 月期间与传染病相关的文章。在这项研究中,我们评估了是否可以使用新闻文章数据来检测新出现的传染病。支持向量机(SVM)、半监督学习(SSL)和深度神经网络(DNN)用于预测,以检查嵌入在网络文章中的信息的使用情况,并检测新发传染病的模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be82/7904826/ea1c54da0e73/41598_2021_83926_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验