Suppr超能文献

一种新的听觉诱发磁场识别方法。

A New Recognition Method for the Auditory Evoked Magnetic Fields.

机构信息

State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics and Centre for Quantum Information Technology, Peking University, Beijing 100871, China.

School of Physics, Peking University, Beijing 100871, China.

出版信息

Comput Intell Neurosci. 2021 Feb 9;2021:6645270. doi: 10.1155/2021/6645270. eCollection 2021.

Abstract

Magnetoencephalography (MEG) is a persuasive tool to study the human brain in physiology and psychology. It can be employed to obtain the inference of change between the external environment and the internal psychology, which requires us to recognize different single trial event-related magnetic fields (ERFs) originated from different functional areas of the brain. Current recognition methods for the single trial data are mainly used for event-related potentials (ERPs) in the electroencephalography (EEG). Although the MEG shares the same signal sources with the EEG, much less interference from the other brain tissues may give the MEG an edge in recognition of the ERFs. In this work, we propose a new recognition method for the single trial auditory evoked magnetic fields (AEFs) through enhancing the signal. We find that the signal strength of the single trial AEFs is concentrated in the primary auditory cortex of the temporal lobe, which can be clearly displayed in the 2D images. These 2D images are then recognized by an artificial neural network (ANN) with 100% accuracy, which realizes the automatic recognition for the single trial AEFs. The method not only may be combined with the source estimation algorithm to improve its accuracy but also paves the way for the implementation of the brain-computer interface (BCI) with the MEG.

摘要

脑磁图(MEG)是研究人类大脑生理学和心理学的有力工具。它可以用于获取外部环境与内部心理之间变化的推断,这需要我们识别源自大脑不同功能区的不同单试事件相关磁场(ERFs)。目前对单试数据的识别方法主要用于脑电图(EEG)中的事件相关电位(ERPs)。尽管 MEG 与 EEG 具有相同的信号源,但来自其他脑组织的干扰要少得多,这可能使 MEG 在识别 ERFs 方面具有优势。在这项工作中,我们通过增强信号提出了一种新的单试听觉诱发磁场(AEFs)识别方法。我们发现单试 AEFs 的信号强度集中在颞叶的初级听觉皮层,在 2D 图像中可以清晰显示。然后,这些 2D 图像由人工神经网络(ANN)以 100%的准确率进行识别,实现了单试 AEFs 的自动识别。该方法不仅可以与源估计算法结合以提高其准确性,还为使用 MEG 实现脑机接口(BCI)铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdf7/7892250/05c8a01ae6dc/CIN2021-6645270.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验