Suppr超能文献

听觉诱发脑磁图和脑电图反应的平均化:批判性讨论

Averaging auditory evoked magnetoencephalographic and electroencephalographic responses: a critical discussion.

作者信息

König Reinhard, Matysiak Artur, Kordecki Wojciech, Sielużycki Cezary, Zacharias Norman, Heil Peter

机构信息

Special Laboratory for Non-invasive Brain Imaging, Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118, Magdeburg, Germany.

出版信息

Eur J Neurosci. 2015 Mar;41(5):631-40. doi: 10.1111/ejn.12833.

Abstract

In the analysis of data from magnetoencephalography (MEG) and electroencephalography (EEG), it is common practice to arithmetically average event-related magnetic fields (ERFs) or event-related electric potentials (ERPs) across single trials and subsequently across subjects to obtain the so-called grand mean. Comparisons of grand means, e.g. between conditions, are then often performed by subtraction. These operations, and their statistical evaluation with parametric tests such as ANOVA, tacitly rely on the assumption that the data follow the additive model, have a normal distribution, and have a homogeneous variance. This may be true for single trials, but these conditions are rarely met when ERFs/ERPs are compared between subjects, meaning that the additive model is seldom the correct model for computing grand mean waveforms. Here, we summarize some of our recent work and present new evidence, from auditory-evoked MEG and EEG results, that the non-normal distributions and the heteroscedasticity observed instead result because ERFs/ERPs follow a mixed model with additive and multiplicative components. For peak amplitudes, such as the auditory M100 and N100, the multiplicative component dominates. These findings emphasize that the common practice of simply subtracting arithmetic means of auditory-evoked ERFs or ERPs is problematic without prior adequate transformation of the data. Application of the area sinus hyperbolicus (asinh) transform to data following the mixed model transforms them into the requested additive model with its normal distribution and homogeneous variance. We therefore advise checking the data for compliance with the additive model and using the asinh transform if required.

摘要

在对脑磁图(MEG)和脑电图(EEG)数据的分析中,常见的做法是对单个试验的事件相关磁场(ERF)或事件相关电位(ERP)进行算术平均,随后再对受试者进行平均,以获得所谓的总体均值。然后,通常通过减法对总体均值进行比较,例如在不同条件之间。这些操作及其使用方差分析等参数检验进行的统计评估默认依赖于数据遵循加性模型、具有正态分布且具有齐次方差的假设。对于单个试验可能确实如此,但当在受试者之间比较ERF/ERP时,这些条件很少得到满足,这意味着加性模型很少是计算总体均值波形的正确模型。在这里,我们总结了我们最近的一些工作,并从听觉诱发的MEG和EEG结果中提供了新的证据,即观察到的非正态分布和异方差性是因为ERF/ERP遵循具有加性和乘性成分的混合模型。对于峰值幅度,如听觉M100和N100,乘性成分占主导。这些发现强调,在没有对数据进行事先充分变换的情况下,简单地减去听觉诱发的ERF或ERP的算术平均值的常见做法是有问题的。将反双曲正弦(asinh)变换应用于遵循混合模型的数据会将它们变换为具有正态分布和齐次方差的所需加性模型。因此,我们建议检查数据是否符合加性模型,并在需要时使用asinh变换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验