Suppr超能文献

基于 HNN 深度学习的 EBT3 光致变色胶片校准。

Calibration of the EBT3 Gafchromic Film Using HNN Deep Learning.

机构信息

Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 82445, Taiwan.

Department of Radiation Oncology, E-Da Hospital, Kaohsiung 82445, Taiwan.

出版信息

Biomed Res Int. 2021 Jan 31;2021:8838401. doi: 10.1155/2021/8838401. eCollection 2021.

Abstract

To achieve a dose distribution conformal to the target volume while sparing normal tissues, intensity modulation with steep dose gradient is used for treatment planning. To successfully deliver such treatment, high spatial and dosimetric accuracy are crucial and need to be verified. With high 2D dosimetry resolution and a self-development property, the Ashland Inc. product EBT3 Gafchromic film is a widely used quality assurance tool designed especially for this. However, the film should be recalibrated each quarter due to the "aging effect," and calibration uncertainties always exist between individual films even in the same lot. Recently, artificial neural networks (ANN) are applied to many fields. If a physicist can collect the calibration data, it could be accumulated to be a substantial ANN data input used for film calibration. We therefore use the Keras functional Application Program Interface to build a hierarchical neural network (HNN), with the inputs of net optical densities, pixel values, and inverse transmittances to reveal the delivered dose and train the neural network with deep learning. For comparison, the film dose calculated using red-channel net optical density with power function fitting was performed and taken as a conventional method. The results show that the percentage error of the film dose using the HNN method is less than 4% for the aging effect verification test and less than 4.5% for the intralot variation test; in contrast, the conventional method could yield errors higher than 10% and 7%, respectively. This HNN method to calibrate the EBT film could be further improved by adding training data or adjusting the HNN structure. The model could help physicists spend less calibration time and reduce film usage.

摘要

为了实现剂量分布与靶区一致并保护正常组织,治疗计划采用了陡峭剂量梯度的强度调制。为了成功实施这种治疗,需要高度的空间和剂量准确性,并需要进行验证。阿什兰公司(Ashland Inc.)的 EBT3 高对比度胶片具有高 2D 剂量分辨率和自主研发的特性,是一种广泛使用的质量保证工具,专门为此设计。然而,由于“老化效应”,胶片每季度需要重新校准,并且即使在同一批次中,各个胶片之间也存在校准不确定性。最近,人工神经网络(ANN)被应用于许多领域。如果物理学家可以收集校准数据,这些数据可以累积起来,成为用于胶片校准的大量 ANN 数据输入。因此,我们使用 Keras 函数式应用程序接口(Application Program Interface)构建了一个分层神经网络(HNN),其输入为净光密度、像素值和反向透过率,以揭示所传递的剂量,并使用深度学习对神经网络进行训练。为了进行比较,我们使用红色通道净光密度的幂函数拟合来计算胶片剂量,并将其作为常规方法。结果表明,对于老化效应验证测试,使用 HNN 方法的胶片剂量百分比误差小于 4%,对于批内变化测试,误差小于 4.5%;相比之下,常规方法的误差分别高于 10%和 7%。这种校准 EBT 胶片的 HNN 方法可以通过添加训练数据或调整 HNN 结构进一步改进。该模型可以帮助物理学家减少校准时间和胶片使用量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4417/7892216/24df01f65493/BMRI2021-8838401.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验