Suppr超能文献

采用电检测方法并结合机器学习辅助算法的微流控超细颗粒剂量计,用于实时监测颗粒密度和尺寸分布。

Microfluidic ultrafine particle dosimeter using an electrical detection method with a machine-learning-aided algorithm for real-time monitoring of particle density and size distribution.

作者信息

Lee Tae-Hoon, Kwon Hong-Beom, Song Woo-Young, Lee Seung-Soo, Kim Yong-Jun

机构信息

School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

出版信息

Lab Chip. 2021 Apr 20;21(8):1503-1516. doi: 10.1039/d0lc01240h.

Abstract

Growing concerns related to the adverse health effects of airborne ultrafine particles (UFPs; particles smaller than 300 nm) have highlighted the need for field-portable, cost-efficient, real-time UFP dosimeters to monitor individual exposure. These dosimeters must measure both the particle density and size distribution as these parameters are essential to the determination of where and how many UFPs will be deposited in human lungs. However, though various kinds of laboratory-grade instruments and hand-held monitors have been developed, they are expensive and only capable of measuring particle size distribution. A microfluidic UFP dosimeter is proposed in this study to address these limitations. The proposed sensor, based on an electrical detection method with a machine-learning-aided algorithm, can simultaneously measure the size distribution (number concentration, mean mobility diameter, geometric standard deviation) and particle density, and is compact owing to the microelectromechanical systems (MEMS) technology. In a comparison test using physically synthesised Ag and di-ethyl-hexyl sebacate (DEHS) aerosols, the mean measurement errors of the proposed sensor compared to the reference system were 6.1%, 4.5%, and 7.3% for number concentration, mean mobility diameter, and particle density, respectively. Moreover, when the machine-learning aided algorithm was operated, the geometric standard deviation could be deduced with a 7.6% difference. These results indicate that the proposed device can be successfully used as a field-portable UFP sensor to assess individual exposure, an on-site monitor for ambient air pollution, an analysis tool in toxicological studies of inhaled particles, for quality assurance of nanomaterials engineered via aerosol synthesis, etc.

摘要

人们越来越关注空气中超细颗粒物(UFP,即直径小于300纳米的颗粒)对健康的不利影响,这凸显了需要一种便于携带、成本效益高的实时UFP剂量计来监测个人暴露情况。这些剂量计必须能够测量颗粒密度和粒径分布,因为这些参数对于确定UFP在人肺中的沉积位置和数量至关重要。然而,尽管已经开发出了各种实验室级仪器和手持式监测器,但它们价格昂贵,且只能测量粒径分布。本研究提出了一种微流控UFP剂量计来解决这些局限性。所提出的传感器基于一种带有机器学习辅助算法的电学检测方法,能够同时测量粒径分布(数量浓度、平均迁移直径、几何标准偏差)和颗粒密度,并且由于采用了微机电系统(MEMS)技术而体积小巧。在使用物理合成的银和癸二酸二乙酯(DEHS)气溶胶进行的对比测试中,与参考系统相比,所提出传感器在数量浓度、平均迁移直径和颗粒密度方面的平均测量误差分别为6.1%、4.5%和7.3%。此外,当运行机器学习辅助算法时,几何标准偏差的推导误差为7.6%。这些结果表明,所提出的设备可以成功用作现场便携式UFP传感器,用于评估个人暴露情况、作为环境空气污染的现场监测器、用于吸入颗粒毒理学研究的分析工具、用于气溶胶合成工程纳米材料的质量保证等。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验