Suppr超能文献

理性工程化恶性疟原虫 l-乳酸脱氢酶环,涉及催化质子转移,以提高手性 2-羟基丁酸的产量。

Rational engineering of the Plasmodium falciparuml-lactate dehydrogenase loop involved in catalytic proton transfer to improve chiral 2-hydroxybutyric acid production.

机构信息

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.

出版信息

Int J Biol Macromol. 2021 May 15;179:71-79. doi: 10.1016/j.ijbiomac.2021.02.144. Epub 2021 Feb 22.

Abstract

l-lactate dehydrogenases (LDHs) has been widely studied for their ability to reduce 2-keto acids for the production of 2-hydroxy acids, whereby 2-hydroxybutyric acids (2-HBA) is among the most important fundamental building blocks for synthesizing pharmaceuticals and biodegradable materials. However, LDHs usually show low activity towards 2-keto acids with longer side chain such as 2-oxobutyric acid (2-OBA). Here rational engineering of the Plasmodium falciparum LDH loop with residue involved in the catalytic proton transfer was initially studied. By combining homology alignment and structure-based design approach, we found that changing the charge characteristics or hydrogen bond network interactions of this loop could improve enzymatic catalytic activities and stabilities towards 2-OBA. Compared with wild type, variant N197D showed 1.15 times higher activity and 2.73 times higher K/Km. The half-life of variant N197D at 40 °C increased to 77.9 h compared with 50.4 h of wild type. Furthermore, asymmetric synthesis of (S)-2-HBA with coenzyme regeneration revealed 95.8 g/L production titer within 12 h for variant N197D, 2.05 times higher than using wild type. Our study indicated the importance of loop with residues involved in the catalytic proton transfer process, and the engineered LDH would be more suitable for (S)-2-HBA production.

摘要

l-乳酸脱氢酶(LDHs)因其能够还原 2-酮酸以生产 2-羟基酸而被广泛研究,其中 2-羟基丁酸(2-HBA)是合成药物和可生物降解材料的最重要的基本构建块之一。然而,LDHs 通常对具有较长侧链的 2-酮酸(如 2-氧丁酸(2-OBA))的活性较低。在这里,我们最初研究了通过残基参与催化质子转移的裂殖疟原虫 LDH 环的合理工程化。通过同源性比对和基于结构的设计方法,我们发现改变该环的电荷特性或氢键网络相互作用可以提高对 2-OBA 的酶催化活性和稳定性。与野生型相比,变体 N197D 的活性提高了 1.15 倍,K/Km 提高了 2.73 倍。变体 N197D 在 40°C 时的半衰期增加到 77.9 h,而野生型为 50.4 h。此外,使用辅酶再生进行(S)-2-HBA 的不对称合成,变体 N197D 在 12 小时内的生产浓度达到 95.8 g/L,是使用野生型的 2.05 倍。我们的研究表明了参与催化质子转移过程的环和残基的重要性,并且经过工程改造的 LDH 将更适合(S)-2-HBA 的生产。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验