Department of Electrical Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, India.
Department of Electrical Engineering, Adani Institute of Infrastructure Engineering, Ahmedabad, India.
Comput Biol Med. 2021 Apr;131:104246. doi: 10.1016/j.compbiomed.2021.104246. Epub 2021 Feb 4.
Sleep is a fundamental human physiological activity required for adequate working of the human body. Sleep disorders such as sleep movement disorders, nocturnal front lobe epilepsy, insomnia, and narcolepsy are caused due to low sleep quality. Insomnia is one such sleep disorder where a person has difficulty in getting quality sleep. There is no definitive test to identify insomnia; hence it is essential to develop an automated system to identify it accurately. A few automated methods have been proposed to identify insomnia using either polysomnogram (PSG) or electroencephalogram (EEG) signals. To the best of our knowledge, we are the first to automatically detect insomnia using only electrocardiogram (ECG) signals without combining them with any other physiological signals. In the proposed study, an optimal antisymmetric biorthogonal wavelet filter bank (ABWFB) has been used, which is designed to minimize the joint duration-bandwidth localization (JDBL) of the underlying filters. The L-norm feature is computed from the various wavelet sub-bands coefficients of ECG signals. The L norm features are fed to various supervised machine learning classifiers for the automated detection of insomnia. In this work, ECG recordings of seven insomnia patients and six normal subjects are used from the publicly available cyclic alternating pattern (CAP) sleep database. We created ten different subsets of ECG signals based on annotations of sleep-stages, namely wake (W), S1, S2, S3, S4, rapid eye moment (REM), light sleep stage (LSS), slow-wave sleep (SWS), non-rapid eye movement (NREM) and W + S1+S2+S3+S4+REM for the automated identification of insomnia. Our proposed ECG-based system obtained the highest classification accuracy of 97.87%, F1-score of 97.39%, and Cohen's kappa value of 0.9559 for K-nearest neighbour (KNN) with the ten-fold cross-validation strategy using ECG signals corresponding to the REM sleep stage. The support vector machine (SVM) yielded the highest value of 0.99 for area under the curve with the ten fold cross-validation corresponding to REM sleep stage.
睡眠是人体正常工作所必需的基本生理活动。睡眠障碍,如睡眠运动障碍、夜间额叶癫痫、失眠和发作性睡病,是由于睡眠质量低引起的。失眠是一种睡眠障碍,患者很难获得高质量的睡眠。目前还没有确定的测试来识别失眠,因此开发一种准确识别失眠的自动化系统是非常必要的。已经提出了一些使用多导睡眠图(PSG)或脑电图(EEG)信号来识别失眠的自动化方法。据我们所知,我们是第一个仅使用心电图(ECG)信号而不与任何其他生理信号结合来自动检测失眠的人。在提出的研究中,使用了最优的反对称双正交小波滤波器组(ABWFB),该滤波器组旨在最小化基础滤波器的联合持续时间带宽定位(JDBL)。从 ECG 信号的各种子波系数中计算出 L 范数特征。L 范数特征被馈送到各种监督机器学习分类器中,以自动检测失眠。在这项工作中,从公开的循环交替模式(CAP)睡眠数据库中使用了 7 名失眠患者和 6 名正常受试者的心电图记录。我们根据睡眠阶段的注释创建了十个不同的 ECG 信号子集,即清醒(W)、S1、S2、S3、S4、快速眼动(REM)、浅睡眠阶段(LSS)、慢波睡眠(SWS)、非快速眼动(NREM)和 W+S1+S2+S3+S4+REM,用于自动识别失眠。我们提出的基于 ECG 的系统在使用 REM 睡眠阶段对应 ECG 信号的十折交叉验证策略下,使用 K-最近邻(KNN)获得了最高的分类准确率 97.87%、F1 分数 97.39%和 Cohen 的 Kappa 值 0.9559。在 REM 睡眠阶段对应的十折交叉验证中,支持向量机(SVM)产生了最高的 0.99 值。