Suppr超能文献

基于小波的可解释自动化睡眠评分系统,用于疑似失眠、呼吸暂停和周期性肢体运动的人群。

Automated explainable wavelet-based sleep scoring system for a population suspected with insomnia, apnea and periodic leg movement.

机构信息

Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur-440010, Maharashtra, India.

Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India.

出版信息

Med Eng Phys. 2024 Aug;130:104208. doi: 10.1016/j.medengphy.2024.104208. Epub 2024 Jul 8.

Abstract

Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classification has been performed manually by trained sleep technologists that visually inspect polysomnography records. However, in order to mitigate the labor-intensive nature of this process, automated approaches have been developed. These automated methods aim to streamline and facilitate sleep stage classification. This study aims to classify sleep stages in a dataset comprising subjects with insomnia, PLM, and sleep apnea. The dataset consists of PSG recordings from the multi-ethnic study of atherosclerosis (MESA) cohort of the national sleep research resource (NSRR), including 2056 subjects. Among these subjects, 130 have insomnia, 39 suffer from PLM, 156 have sleep apnea, and the remaining 1731 are classified as good sleepers. This study proposes an automated computerized technique to classify sleep stages, developing a machine-learning model with explainable artificial intelligence (XAI) capabilities using wavelet-based Hjorth parameters. An optimal biorthogonal wavelet filter bank (BOWFB) has been employed to extract subbands (SBs) from 30 seconds of electroencephalogram (EEG) epochs. Three EEG channels, namely: Fz_Cz, Cz_Oz, and C4_M1, are employed to yield an optimum outcome. The Hjorth parameters extracted from SBs were then fed to different machine learning algorithms. To gain an understanding of the model, in this study, we used SHAP (Shapley Additive explanations) method. For subjects suffering from the aforementioned diseases, the model utilized features derived from all channels and employed an ensembled bagged trees (EnBT) classifier. The highest accuracy of 86.8%, 87.3%, 85.0%, 84.5%, and 83.8% is obtained for the insomniac, PLM, apniac, good sleepers and complete datasets, respectively. Using these techniques and datasets, the study aims to enhance sleep stage classification accuracy and improve understanding of sleep disorders such as insomnia, PLM, and sleep apnea.

摘要

睡眠是人类生命不可或缺的重要组成部分,对整体健康和幸福感有重大影响,但全球相当多的人患有睡眠障碍。睡眠障碍的诊断严重依赖于准确地对睡眠阶段进行分类。传统上,这种分类是由经过培训的睡眠技术员通过视觉检查多导睡眠图记录来完成的。然而,为了减轻这个过程的劳动强度,已经开发了自动化方法。这些自动化方法旨在简化和促进睡眠阶段的分类。本研究旨在对包含失眠、周期性肢体运动障碍和睡眠呼吸暂停患者的数据集进行睡眠阶段分类。该数据集由国家睡眠研究资源(NSRR)的多民族动脉粥样硬化研究(MESA)队列的多导睡眠图记录组成,包括 2056 名受试者。在这些受试者中,130 人患有失眠症,39 人患有周期性肢体运动障碍,156 人患有睡眠呼吸暂停,其余 1731 人被归类为睡眠良好者。本研究提出了一种自动化的计算机技术来对睡眠阶段进行分类,开发了一种具有可解释人工智能(XAI)能力的基于小波的 Hjorth 参数的机器学习模型。使用双正交小波滤波器组(BOWFB)来从 30 秒的脑电图(EEG)时段中提取子带(SB)。使用三个脑电图通道:Fz_Cz、Cz_Oz 和 C4_M1,以获得最佳结果。然后,从 SB 中提取 Hjorth 参数,并将其输入到不同的机器学习算法中。为了了解模型,在本研究中,我们使用了 SHAP(Shapley Additive explanations)方法。对于患有上述疾病的受试者,该模型利用来自所有通道的特征,并采用集成袋树(EnBT)分类器。对于失眠症患者、周期性肢体运动障碍患者、睡眠呼吸暂停患者、睡眠良好者和完整数据集,获得的最高准确率分别为 86.8%、87.3%、85.0%、84.5%和 83.8%。利用这些技术和数据集,本研究旨在提高睡眠阶段分类的准确性,并加深对失眠症、周期性肢体运动障碍和睡眠呼吸暂停等睡眠障碍的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验