Suppr超能文献

基于心冲击图信号的连续小波变换和深度神经网络的高血压自动检测

Automated Detection of Hypertension Using Continuous Wavelet Transform and a Deep Neural Network with Ballistocardiography Signals.

机构信息

Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India.

Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore.

出版信息

Int J Environ Res Public Health. 2022 Mar 28;19(7):4014. doi: 10.3390/ijerph19074014.

Abstract

Managing hypertension (HPT) remains a significant challenge for humanity. Despite advancements in blood pressure (BP)-measuring systems and the accessibility of effective and safe anti-hypertensive medicines, HPT is a major public health concern. Headaches, dizziness and fainting are common symptoms of HPT. In HPT patients, normalcy may be observed at one instant and abnormality may prevail during a long duration of 24 h ambulatory BP. This may cause difficulty in identifying patients with HPT, and hence there is a possibility that individuals may be untreated or administered insufficiently. Most importantly, uncontrolled HPT can lead to severe complications (stroke, heart attack, kidney disease, and heart failure), mainly ignoring the signs in nascent stages. HPT in the beginning stages may not present distinct symptoms and may be difficult to diagnose from standard physiological signals. Hence, ballistocardiography (BCG) signal was used in this study to detect HPT automatically. The processed signals from BCG were converted into scalogram images using a continuous wavelet transform (CWT) and were then fed into a 2-D convolutional neural network model (2D-CNN). The model was trained to learn and recognize BCG patterns of healthy controls (HC) and HPT classes. Our proposed model obtained a high classification accuracy of 86.14% with a ten-fold cross-validation (CV) strategy. Hence, this is the first use of a 2D-CNN model (deep-learning algorithm) to detect HPT employing BCG signals.

摘要

管理高血压(HPT)仍然是人类面临的重大挑战。尽管血压(BP)测量系统有所进步,且有有效的、安全的抗高血压药物,但 HPT 仍是一个主要的公共卫生关注点。头痛、头晕和晕厥是 HPT 的常见症状。在 HPT 患者中,瞬间可能表现为正常,而在 24 小时动态血压的长时间内可能表现为异常。这可能导致难以识别 HPT 患者,因此存在个体可能未得到治疗或治疗不足的可能性。最重要的是,未控制的 HPT 可导致严重并发症(中风、心脏病发作、肾病和心力衰竭),主要是忽略了早期迹象。HPT 在早期可能没有明显的症状,并且可能难以从标准生理信号中诊断出来。因此,在这项研究中使用了心冲击图(BCG)信号来自动检测 HPT。使用连续小波变换(CWT)将 BCG 的处理信号转换为标度图像,然后将其输入到二维卷积神经网络模型(2D-CNN)中。该模型经过训练,以学习和识别健康对照(HC)和 HPT 类别的 BCG 模式。我们提出的模型采用十折交叉验证(CV)策略,获得了 86.14%的高分类准确率。因此,这是首次使用 2D-CNN 模型(深度学习算法)来检测采用 BCG 信号的 HPT。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baa6/8997686/8d1d8e4cdb71/ijerph-19-04014-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验