Suppr超能文献

利用哨兵动物运动及时进行偷猎者检测和定位。

Timely poacher detection and localization using sentinel animal movement.

机构信息

Wildlife Ecology and Conservation Group, Wageningen University and Research, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands.

School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.

出版信息

Sci Rep. 2021 Feb 25;11(1):4596. doi: 10.1038/s41598-021-83800-1.

Abstract

Wildlife crime is one of the most profitable illegal industries worldwide. Current actions to reduce it are far from effective and fail to prevent population declines of many endangered species, pressing the need for innovative anti-poaching solutions. Here, we propose and test a poacher early warning system that is based on the movement responses of non-targeted sentinel animals, which naturally respond to threats by fleeing and changing herd topology. We analyzed human-evasive movement patterns of 135 mammalian savanna herbivores of four different species, using an internet-of-things architecture with wearable sensors, wireless data transmission and machine learning algorithms. We show that the presence of human intruders can be accurately detected (86.1% accuracy) and localized (less than 500 m error in 54.2% of the experimentally staged intrusions) by algorithmically identifying characteristic changes in sentinel movement. These behavioral signatures include, among others, an increase in movement speed, energy expenditure, body acceleration, directional persistence and herd coherence, and a decrease in suitability of selected habitat. The key to successful identification of these signatures lies in identifying systematic deviations from normal behavior under similar conditions, such as season, time of day and habitat. We also show that the indirect costs of predation are not limited to vigilance, but also include (1) long, high-speed flights; (2) energetically costly flight paths; and (3) suboptimal habitat selection during flights. The combination of wireless biologging, predictive analytics and sentinel animal behavior can benefit wildlife conservation via early poacher detection, but also solve challenges related to surveillance, safety and health.

摘要

野生动物犯罪是全球最有利可图的非法产业之一。目前减少野生动物犯罪的行动远远不够有效,未能阻止许多濒危物种数量的下降,迫切需要创新的反偷猎解决方案。在这里,我们提出并测试了一种基于非目标哨动物运动反应的偷猎者预警系统,这些动物会自然地通过逃跑和改变群体拓扑结构来对威胁做出反应。我们使用带有可穿戴传感器、无线数据传输和机器学习算法的物联网架构,分析了 135 种不同物种的哺乳动物食草动物的人类回避运动模式。我们表明,通过算法识别哨兵运动中的特征变化,可以准确检测(准确率为 86.1%)和定位(在 54.2%的实验性入侵中,误差小于 500 米)人类入侵者的存在。这些行为特征包括但不限于运动速度、能量消耗、身体加速度、方向持久性和群体连贯性增加,以及选定栖息地适宜性降低。成功识别这些特征的关键在于识别在类似条件(如季节、一天中的时间和栖息地)下,从正常行为中系统偏离的情况。我们还表明,捕食的间接成本不仅限于警戒,还包括(1)长距离、高速飞行;(2)能量消耗大的飞行路径;以及(3)在飞行过程中对栖息地的次优选择。无线生物识别、预测分析和哨动物行为的结合可以通过早期偷猎者检测来造福野生动物保护,但也可以解决与监控、安全和健康相关的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d45/7907380/4efef940bc39/41598_2021_83800_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验