Suppr超能文献

ROS 调控的可逆蛋白相分离同步植物开花。

ROS regulated reversible protein phase separation synchronizes plant flowering.

机构信息

State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.

CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Chem Biol. 2021 May;17(5):549-557. doi: 10.1038/s41589-021-00739-0. Epub 2021 Feb 25.

Abstract

How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced HO in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues.

摘要

好氧生物如何利用不可避免产生但潜在危险的活性氧 (ROS) 来促进正常生命活动是一个基本的生物学问题。据报道,局部积累的 ROS 可以启动干细胞分化。然而,其潜在的分子机制尚不清楚。在这里,我们揭示了植物茎尖分生组织 (SAM) 中发育产生的 HO 触发转录因子 TERMINATING FLOWER (TMF) 的可逆蛋白相分离,该因子通过抑制 SAM 成熟前体来调节番茄的开花转变。TMF 中的半胱氨酸残基感知细胞内的氧化还原状态,形成二硫键,将多个 TMF 分子串联起来,并增加无序区域的数量,从而驱动相分离。氧化触发的相分离使 TMF 能够结合并隔离花的身份基因 ANANTHA 的启动子,从而抑制其表达。通过氧化还原调控的相分离实现的可逆转录凝聚赋予好氧生物在应对发育信号时灵活的基因调控能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验