Suppr超能文献

预测糖尿病足患者多重耐药菌感染风险的列线图模型

Nomogram Model for Predicting the Risk of Multidrug-Resistant Bacteria Infection in Diabetic Foot Patients.

作者信息

Ma Yi-Ni, Zhang Li-Xiang, Hu Yuan-Yuan, Shi Tian-Lu

机构信息

Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China.

Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, People's Republic of China.

出版信息

Infect Drug Resist. 2021 Feb 18;14:627-637. doi: 10.2147/IDR.S287852. eCollection 2021.

Abstract

OBJECTIVE

This study established an individualized nomogram for predicting the risk of multidrug-resistant bacterial (MDRB) infection in patients with the diabetic foot (DF), and providing a reference for clinical prevention and treatment.

METHODS

A total of 199 DF patients admitted to the hospital from July 2015 to December 2018 were included in this study. The pathogenic bacteria at the site of infection were detected and the factors affecting the occurrence of MDRB infection in DF patients summarized. The R software was used to draw the nomogram, and the Bootstrap Method used to internally verify the model. The calibration curve and the Harrell's Concordance Index (C-index) were used to evaluate the predictive effect of the nomogram model.

RESULTS

Logistic regression analysis showed that age, course of diabetes, previous use of antibacterial drugs, types of antibacterial drugs, and osteoporosis were risk factors for multidrug-resistant infections in DF (P<0.05). The area under the receiver operating characteristic curve (AUC, Area Under Curve) of the nomogram model after internal verification was 0.773 (95% CI: 0.704-0.830). The mean absolute error between the predicted probability of infection in the nomogram and the actual occurrence of MDRB was 0.032, indicating that the nomogram model had good forecasting efficiency and stability.

CONCLUSION

The risk factors for multidrug-resistant infections in DF are age, course of diabetes, previous use of antibacterial drugs, types of antibacterial drugs used, and osteoporosis. The nomogram model drawn on these risk factors has good predictive accuracy and can assist medical staff in formulating targeted infection prevention strategies for patients.

摘要

目的

本研究建立了一个个体化列线图,用于预测糖尿病足(DF)患者多重耐药菌(MDRB)感染的风险,并为临床防治提供参考。

方法

本研究纳入了2015年7月至2018年12月期间收治的199例DF患者。检测感染部位的病原菌,总结影响DF患者发生MDRB感染的因素。使用R软件绘制列线图,并采用Bootstrap法对模型进行内部验证。采用校准曲线和Harrell一致性指数(C指数)评估列线图模型的预测效果。

结果

Logistic回归分析显示,年龄、糖尿病病程、既往使用抗菌药物情况、抗菌药物种类及骨质疏松是DF患者多重耐药感染的危险因素(P<0.05)。内部验证后列线图模型的受试者工作特征曲线下面积(AUC)为0.773(95%CI:0.704-0.830)。列线图预测感染概率与MDRB实际发生情况之间的平均绝对误差为0.032,表明列线图模型具有良好的预测效率和稳定性。

结论

DF患者多重耐药感染的危险因素为年龄、糖尿病病程、既往使用抗菌药物情况、所用抗菌药物种类及骨质疏松。基于这些危险因素绘制的列线图模型具有良好的预测准确性,可协助医务人员为患者制定针对性的感染预防策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6832/7901569/820540417c65/IDR-14-627-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验