Pham Kim, Maurel Agnès, Marigo Jean-Jacques
IMSIA, CNRS, EDF, CEA, ENSTA Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91732 Palaiseau, France.
Institut Langevin, ESPCI Paris, Université PSL, CNRS, 1 rue Jussieu, Paris 75005, France.
Proc Math Phys Eng Sci. 2021 Jan;477(2245):20200519. doi: 10.1098/rspa.2020.0519. Epub 2021 Jan 13.
We study the interaction of in-plane elastic waves with imperfect interfaces composed of a periodic array of voids or cracks. An effective model is derived from high-order asymptotic analysis based on two-scale homogenization and matched asymptotic technique. In two-dimensional elasticity, we obtain jump conditions set on the in-plane displacements and normal stresses; the jumps involve in addition effective parameters provided by static, elementary problems being the equivalents of the cell problems in classical two-scale homogenization. The derivation of the model is conducted in the transient regime and its stability is guarantied by the positiveness of the effective interfacial energy. Spring models are envisioned as particular cases. It is shown that models are recovered in the limit of small void thicknesses and collinear cracks. By contrast, the use of model is justified at normal incidence, otherwise unjustified. We provide quantitative validations of our model and comparison with spring models by means of comparison with direct numerical calculations in the harmonic regime.
我们研究面内弹性波与由周期性排列的孔洞或裂纹组成的不完美界面之间的相互作用。基于双尺度均匀化和匹配渐近技术,通过高阶渐近分析推导出一个有效模型。在二维弹性力学中,我们得到了面内位移和法向应力的跳跃条件;这些跳跃还涉及由静态基本问题提供的有效参数,这些基本问题相当于经典双尺度均匀化中的胞元问题。该模型的推导是在瞬态状态下进行的,其稳定性由有效界面能的正性保证。弹簧模型被视为特殊情况。结果表明,在小空洞厚度和共线裂纹的极限情况下可以恢复到相应模型。相比之下,在垂直入射时使用某模型是合理的,否则不合理。我们通过与谐波状态下的直接数值计算进行比较,对我们的模型进行了定量验证,并与弹簧模型进行了比较。