Delourme B, Lunéville E, Marigo J-J, Maurel A, Mercier J-F, Pham K
LAGA, Université Paris 13, Villetaneuse, France.
Poems, CNRS, ENSTA ParisTech, INRIA, 828 Bd des Maréchaux, 91762 Palaiseau, France.
Proc Math Phys Eng Sci. 2021 Jan;477(2245):20200668. doi: 10.1098/rspa.2020.0668. Epub 2021 Jan 27.
We study some effective transmission conditions able to reproduce the effect of a periodic array of Dirichlet wires on wave propagation, in particular when the array delimits an acoustic Faraday cage able to resonate. In the study of Hewett & Hewitt (2016 , 20160062 (doi:10.1098/rspa.2016.0062)) different transmission conditions emerge from the asymptotic analysis whose validity depends on the frequency, specifically the distance to a resonance frequency of the cage. In practice, dealing with such conditions is difficult, especially if the problem is set in the time domain. In the present study, we demonstrate the validity of a simpler model derived in Marigo & Maurel (2016 , 20160068 (doi:10.1098/rspa.2016.0068)), where means valid whatever the distance to the resonance frequencies. The effectiveness of the model is discussed in the harmonic regime owing to explicit solutions. It is also exemplified in the time domain, where a formulation guaranteeing the stability of the numerical scheme has been implemented.
我们研究了一些有效的传输条件,这些条件能够重现狄利克雷金属丝周期阵列对波传播的影响,特别是当该阵列界定了一个能够共振的声学法拉第笼时。在休伊特和休伊特(2016年,20160062(doi:10.1098/rspa.2016.0062))的研究中,渐近分析得出了不同的传输条件,其有效性取决于频率,具体而言是与笼子共振频率的距离。实际上,处理这些条件很困难,特别是如果问题设定在时域中。在本研究中,我们证明了在马里戈和毛雷尔(2016年,20160068(doi:10.1098/rspa.2016.0068))中推导的一个更简单模型的有效性,其中“有效”意味着无论与共振频率的距离如何都有效。由于有显式解,该模型在谐波 regime 中的有效性得到了讨论。它还在时域中得到了例证,其中已经实现了一种保证数值方案稳定性的公式。