Suppr超能文献

接触几何结构和抗衡离子对多金属氧酸盐分子结中电流流动和电荷转移的影响:密度泛函理论研究

Influence of the Contact Geometry and Counterions on the Current Flow and Charge Transfer in Polyoxometalate Molecular Junctions: A Density Functional Theory Study.

作者信息

Lapham Paul, Vilà-Nadal Laia, Cronin Leroy, Georgiev Vihar P

机构信息

Device Modelling Group, James Watt School of Engineering, The University of Glasgow, G12 8QQ Glasgow, U.K.

School of Chemistry, The University of Glasgow, G12 8QQ Glasgow, U.K.

出版信息

J Phys Chem C Nanomater Interfaces. 2021 Feb 18;125(6):3599-3610. doi: 10.1021/acs.jpcc.0c11038. Epub 2021 Feb 4.

Abstract

Polyoxometalates (POMs) are promising candidates for molecular electronic applications because (1) they are inorganic molecules, which have better CMOS compatibility compared to organic molecules; (2) they are easily synthesized in a one-pot reaction from metal oxides (MO ) (where the metal M can be, e.g., W, V, or Mo, and is an integer between 4 and 7); (3) POMs can self-assemble to form various shapes and configurations, and thus the chemical synthesis can be tailored for specific device performance; and (4) they are redox-active with multiple states that have a very low voltage switching between polarized states. However, a deep understanding is required if we are to make commercial molecular devices a reality. Simulation and modeling are the most time efficient and cost-effective methods to evaluate a potential device performance. Here, we use density functional theory in combination with nonequilibrium Green's function to study the transport properties of [WO(SO)], a POM cluster, in a variety of molecular junction configurations. Our calculations reveal that the transport profile not only is linked to the electronic structure of the molecule but also is influenced by contact geometry and presence of ions. More specifically, the contact geometry and the number of bonds between the POM and the electrodes determine the current flow. Hence, strong and reproducible contact between the leads and the molecule is mandatory to establish a reliable fabrication process. Moreover, although often ignored, our simulations show that the charge balancing counterions activate the conductance channels intrinsic to the molecule, leading to a dramatic increase in the computed current at low bias. Therefore, the role of these counterions cannot be ignored when molecular based devices are fabricated. In summary, this work shows that the current transport in POM junctions is determined by not only the contact geometry between the molecule and the electrode but also the presence of ions around the molecule. This significantly impacts the transport properties in such nanoscale molecular electronic devices.

摘要

多金属氧酸盐(POMs)是分子电子应用领域很有前景的候选材料,原因如下:(1)它们是无机分子,与有机分子相比具有更好的CMOS兼容性;(2)它们可以通过金属氧化物(MO )在一锅反应中轻松合成(其中金属M可以是,例如,W、V或Mo,且 是4到7之间的整数);(3)POMs可以自组装形成各种形状和构型,因此化学合成可以针对特定的器件性能进行定制;(4)它们具有氧化还原活性,具有多种状态,在极化状态之间的电压切换非常低。然而,如果我们要使商业分子器件成为现实,则需要深入理解。模拟和建模是评估潜在器件性能最省时且最具成本效益的方法。在这里,我们结合密度泛函理论和非平衡格林函数来研究[WO(SO)](一种POM簇)在各种分子结构型中的输运性质。我们的计算表明,输运分布不仅与分子的电子结构有关,还受接触几何形状和离子存在的影响。更具体地说,POM与电极之间的接触几何形状和键的数量决定了电流流动。因此,引线与分子之间牢固且可重复的接触对于建立可靠的制造工艺至关重要。此外,尽管经常被忽视,但我们的模拟表明,电荷平衡抗衡离子会激活分子固有的电导通道,导致在低偏压下计算出的电流大幅增加。因此,在制造基于分子的器件时,这些抗衡离子的作用不可忽视。总之,这项工作表明,POM结中的电流输运不仅取决于分子与电极之间的接触几何形状,还取决于分子周围离子的存在。这对这种纳米级分子电子器件的输运性质有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/163c/7899180/6c089aff3b52/jp0c11038_0001.jpg

相似文献

1
Influence of the Contact Geometry and Counterions on the Current Flow and Charge Transfer in Polyoxometalate Molecular Junctions: A Density Functional Theory Study.
J Phys Chem C Nanomater Interfaces. 2021 Feb 18;125(6):3599-3610. doi: 10.1021/acs.jpcc.0c11038. Epub 2021 Feb 4.
2
Charge transport in nanoscale junctions.
J Phys Condens Matter. 2008 Sep 3;20(37):370301. doi: 10.1088/0953-8984/20/37/370301. Epub 2008 Aug 6.
4
Rare Earth Polyoxometalates.
Acc Chem Res. 2017 Sep 19;50(9):2205-2214. doi: 10.1021/acs.accounts.7b00197. Epub 2017 Sep 5.
5
Ion-pairing in polyoxometalate chemistry: impact of fully hydrated alkali metal cations on properties of the keggin [PWO] anion.
Dalton Trans. 2020 Aug 28;49(32):11170-11178. doi: 10.1039/d0dt02239j. Epub 2020 Aug 4.
6
7
Single Molecule Nanoelectrochemistry in Electrical Junctions.
Acc Chem Res. 2016 Nov 15;49(11):2640-2648. doi: 10.1021/acs.accounts.6b00373. Epub 2016 Oct 7.
8
Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics.
Acc Chem Res. 2015 Sep 15;48(9):2565-75. doi: 10.1021/acs.accounts.5b00133. Epub 2015 Jul 20.
10
Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions.
Nanoscale. 2018 Sep 20;10(36):17156-17165. doi: 10.1039/c8nr04946g.

引用本文的文献

1
2
Computational Study into the Effects of Countercations on the [PWO] Polyoxometalate Wheel.
ACS Org Inorg Au. 2023 Jul 22;3(5):274-282. doi: 10.1021/acsorginorgau.3c00014. eCollection 2023 Oct 4.
3
Polyoxoplatinates as covalently dynamic electron sponges and molecular electronics materials.
Nanoscale Adv. 2021 Aug 13;3(19):5663-5675. doi: 10.1039/d1na00387a. eCollection 2021 Sep 28.
4
Hopping or Tunneling? Tailoring the Electron Transport Mechanisms through Hydrogen Bonding Geometry in the Boron-Doped Diamond Molecular Junctions.
J Phys Chem Lett. 2022 Sep 1;13(34):7972-7979. doi: 10.1021/acs.jpclett.2c01679. Epub 2022 Aug 19.

本文引用的文献

1
Green's function methods for single molecule junctions.
J Chem Phys. 2020 Mar 7;152(9):090901. doi: 10.1063/1.5145210.
2
Reversal of the Direction of Rectification Induced by Fermi Level Pinning at Molecule-Electrode Interfaces in Redox-Active Tunneling Junctions.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):55044-55055. doi: 10.1021/acsami.0c15435. Epub 2020 Nov 25.
3
Functional Redox-Active Molecular Tunnel Junctions.
Chem Asian J. 2020 Nov 16;15(22):3752-3770. doi: 10.1002/asia.202000932. Epub 2020 Oct 14.
4
Electric-field-driven dual-functional molecular switches in tunnel junctions.
Nat Mater. 2020 Aug;19(8):843-848. doi: 10.1038/s41563-020-0697-5. Epub 2020 Jun 1.
5
Charge disproportionate molecular redox for discrete memristive and memcapacitive switching.
Nat Nanotechnol. 2020 May;15(5):380-389. doi: 10.1038/s41565-020-0653-1. Epub 2020 Mar 23.
6
Can One Define the Conductance of Amino Acids?
Biomolecules. 2019 Oct 7;9(10):580. doi: 10.3390/biom9100580.
7
QuantumATK: an integrated platform of electronic and atomic-scale modelling tools.
J Phys Condens Matter. 2020 Jan 1;32(1):015901. doi: 10.1088/1361-648X/ab4007. Epub 2019 Aug 30.
8
Beyond Charge Balance: Counter-Cations in Polyoxometalate Chemistry.
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):596-612. doi: 10.1002/anie.201905600. Epub 2019 Oct 31.
9
Conceptual Framework of Organic Electronics.
Chimia (Aarau). 2019 Apr 24;73(4):245-251. doi: 10.2533/chimia.2019.245.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验