Suppr超能文献

程序性细胞死亡配体1表达对妇科癌症患者预后、临床病理因素及程序性细胞死亡蛋白1/程序性细胞死亡配体1抑制剂反应的预测价值:一项荟萃分析

Predictive Values of Programmed Cell Death-Ligand 1 Expression for Prognosis, Clinicopathological Factors, and Response to Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Inhibitors in Patients With Gynecological Cancers: A Meta-Analysis.

作者信息

Zhang Chen, Yang Qing

机构信息

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.

出版信息

Front Oncol. 2021 Feb 1;10:572203. doi: 10.3389/fonc.2020.572203. eCollection 2020.

Abstract

BACKGROUND

The prognostic value of programmed cell death-ligand 1 (PD-L1) in gynecological cancers has been explored previously, but the conclusion remains controversial due to limited evidence. This study aimed to conduct an updated meta-analysis to re-investigate the predictive significance of PD-L1 expression.

METHODS

PubMed, EMBASE and Cochrane Library databases were searched. The associations between PD-L1 expression status and prognosis [overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), cancer-specific survival (CSS) or disease-free survival (DFS)], clinical parameters [FIGO stage, lymph node metastasis (LNM), tumor size, infiltration depth, lymphovascular space invasion (LVSI) or grade] and response to anti-PD-1/PD-L1 treatment [objective response rate (ORR)] were analyzed by hazard ratios (HR) or relative risks (RR).

RESULTS

Fifty-five studies were enrolled. Overall, high PD-L1 expression was not significantly associated with OS, PFS, RFS, CSS and DFS of gynecological cancers. However, subgroup analysis of studies with reported HR (HR = 1.27) and a cut-off value of 5% (HR = 2.10) suggested that high PD-L1 expression was correlated with a shorter OS of gynecological cancer patients. Further sub-subgroup analysis revealed that high PD-L1 expressed on tumor-infiltrating immune cells (TICs) predicted a favorable OS for ovarian (HR = 0.72), but a poor OS for cervical cancer (HR = 3.44). PD-L1 overexpression was also correlated with a lower OS rate in non-Asian endometrial cancer (HR = 1.60). High level of PD-L1 was only clinically correlated with a shorter PFS in Asian endometrial cancer (HR = 1.59). Furthermore, PD-L1-positivity was correlated with LNM (for overall, ovarian and endometrial cancer expressed on tumor cells), advanced FIGO stage (for overall, ovarian cancer expressed on tumor cells, endometrial cancer expressed on tumor cells and TICs), LVSI (for overall and endometrial cancer expressed on tumor cells and TICs), and increasing infiltration depth/high grade (only for endometrial cancer expressed on TICs). Patients with PD-L1-positivity may obtain more benefit from anti-PD-1/PD-L1 treatment than the negative group, showing a higher ORR (RR = 1.98), longer OS (HR = 0.34) and PFS (HR = 0.61).

CONCLUSION

Our findings suggest high PD-L1 expression may be a suitable biomarker for predicting the clinical outcomes in patients with gynecological cancers.

摘要

背景

此前已探讨程序性细胞死亡配体1(PD-L1)在妇科癌症中的预后价值,但由于证据有限,结论仍存在争议。本研究旨在进行一项更新的荟萃分析,以重新研究PD-L1表达的预测意义。

方法

检索了PubMed、EMBASE和Cochrane图书馆数据库。通过风险比(HR)或相对风险(RR)分析PD-L1表达状态与预后[总生存期(OS)、无进展生存期(PFS)、无复发生存期(RFS)、癌症特异性生存期(CSS)或无病生存期(DFS)]、临床参数[国际妇产科联盟(FIGO)分期、淋巴结转移(LNM)、肿瘤大小、浸润深度、淋巴管间隙浸润(LVSI)或分级]以及对抗PD-1/PD-L1治疗的反应[客观缓解率(ORR)]之间的关联。

结果

纳入了55项研究。总体而言,高PD-L1表达与妇科癌症的OS、PFS、RFS、CSS和DFS无显著关联。然而,对报告了HR(HR = 1.27)且临界值为5%(HR = 2.10)的研究进行亚组分析表明,高PD-L1表达与妇科癌症患者较短的OS相关。进一步的亚亚组分析显示,肿瘤浸润免疫细胞(TICs)上高表达的PD-L1预测卵巢癌患者有较好的OS(HR = 0.72),但宫颈癌患者的OS较差(HR = 3.44)。PD-L1过表达在非亚洲子宫内膜癌中也与较低的OS率相关(HR = 1.60)。高水平的PD-L1仅在亚洲子宫内膜癌中与较短的PFS有临床相关性(HR = 1.59)。此外,PD-L1阳性与LNM(总体而言,肿瘤细胞上表达的卵巢癌和子宫内膜癌)、晚期FIGO分期(总体而言,肿瘤细胞上表达的卵巢癌、肿瘤细胞和TICs上表达的子宫内膜癌)、LVSI(总体而言以及肿瘤细胞和TICs上表达的子宫内膜癌)以及浸润深度增加/高级别(仅针对TICs上表达的子宫内膜癌)相关。与阴性组相比,PD-L1阳性的患者可能从抗PD-1/PD-L1治疗中获得更多益处,表现出更高的ORR(RR = 1.98)、更长的OS(HR = 0.34)和PFS(HR = 0.61)。

结论

我们的研究结果表明,高PD-L1表达可能是预测妇科癌症患者临床结局的合适生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/def6/7901918/e1f80b453d32/fonc-10-572203-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验