Johnson Brian P, Vitek Ross A, Morgan Molly M, Fink Dustin M, Beames Tyler G, Geiger Peter G, Beebe David J, Lipinski Robert J
Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States.
Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States.
Front Cell Dev Biol. 2021 Feb 9;9:621442. doi: 10.3389/fcell.2021.621442. eCollection 2021.
Paracrine signaling in the tissue microenvironment is a central mediator of morphogenesis, and modeling this dynamic intercellular activity is critical to understanding normal and abnormal development. For example, Sonic Hedgehog (Shh) signaling is a conserved mechanism involved in multiple developmental processes and strongly linked to human birth defects including orofacial clefts of the lip and palate. SHH ligand produced, processed, and secreted from the epithelial ectoderm is shuttled through the extracellular matrix where it binds mesenchymal receptors, establishing a gradient of transcriptional response that drives orofacial morphogenesis. In humans, complex interactions of genetic predispositions and environmental insults acting on diverse molecular targets are thought to underlie orofacial cleft etiology. Consequently, there is a need for tractable approaches that model this complex cellular and environmental interplay and are sensitive to disruption across the multistep signaling cascade. We developed a microplate-based device that supports an epithelium directly overlaid onto an extracellular matrix-embedded mesenchyme, mimicking the basic tissue architecture of developing orofacial tissues. SHH ligand produced from the epithelium generated a gradient of SHH-driven transcription in the adjacent mesenchyme, recapitulating the gradient of pathway activity observed . Shh pathway activation was antagonized by small molecule inhibitors of epithelial secretory, extracellular matrix transport, and mesenchymal sensing targets, supporting the use of this approach in high-content chemical screening of the complete Shh pathway. Together, these findings demonstrate a novel and practical microphysiological model with broad utility for investigating epithelial-mesenchymal interactions and environmental signaling disruptions in development.
组织微环境中的旁分泌信号传导是形态发生的核心介质,对这种动态细胞间活动进行建模对于理解正常和异常发育至关重要。例如,音猬因子(Shh)信号传导是一种保守机制,参与多个发育过程,并与包括唇腭裂在内的人类出生缺陷密切相关。由上皮外胚层产生、加工和分泌的SHH配体穿梭于细胞外基质中,在那里它与间充质受体结合,建立驱动口面部形态发生的转录反应梯度。在人类中,遗传易感性和作用于多种分子靶点的环境损伤之间的复杂相互作用被认为是口面部裂病因的基础。因此,需要易于处理的方法来模拟这种复杂的细胞与环境相互作用,并对多步骤信号级联反应中的破坏敏感。我们开发了一种基于微孔板的装置,该装置支持上皮直接覆盖在嵌入细胞外基质的间充质上,模拟发育中的口面部组织的基本组织结构。上皮产生的SHH配体在相邻间充质中产生了由SHH驱动的转录梯度,重现了观察到的信号通路活性梯度。上皮分泌、细胞外基质运输和间充质传感靶点的小分子抑制剂拮抗了Shh信号通路的激活,支持了这种方法在完整Shh信号通路的高内涵化学筛选中的应用。总之,这些发现证明了一种新颖且实用的微生理模型,在研究发育过程中的上皮-间充质相互作用和环境信号破坏方面具有广泛的用途。