Xu Guiying, Xue Rongming, Stuard Samuel J, Ade Harald, Zhang Chenjie, Yao Jianlin, Li Yaowen, Li Yongfang
Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Department of Physics and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA.
Adv Mater. 2021 Apr;33(13):e2006753. doi: 10.1002/adma.202006753. Epub 2021 Feb 26.
Solution-processed organic semiconductor charge-transport layers (OS-CTLs) with high mobility, low trap density, and energy level alignment have dominated the important progress in p-i-n planar perovskite solar cells (pero-SCs). Unfortunately, their inevitable long chains result in weak molecular stacking, which is likely to generate high energy disorder and deteriorate the charge-transport ability of OS-CTLs. Here, a charge-transfer complex (CTC) strategy to reduce the energy disorder in the OS-CTLs by doping an organic semiconductor, 4,4'-(4,8-bis(5-(trimethylsilyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (BDT-Si), in a commercial hole-transport layer (HTL), poly[bis(4-phenyl) (2,4,6-trimethylphenyl)amine (PTAA), is proposed. The formation of the CTC makes the PTAA conjugated backbone electron-deficient, resulting in a quinoidal and stiffer character, which is likely to planarize the PTAA backbone and enhance the ordering of the film in nanoscale. The resultant HTL exhibits a reduced energy disorder, which simultaneously promotes hole transport in the HTL, hole extraction at the interface, energy level alignment, and quasi-Fermi level splitting in the device. As a result, the p-i-n planar pero-SCs with optimized HTL exhibit the best power conversion efficiency of 21.87% with good operating stability. This finding demonstrates that the CTC strategy is an effective way to reduce the energy disorder in HTLs and to improve the performance of planar pero-SCs.
具有高迁移率、低陷阱密度和能级匹配的溶液法制备有机半导体电荷传输层(OS-CTLs)主导了p-i-n平面钙钛矿太阳能电池(pero-SCs)的重要进展。不幸的是,它们不可避免的长链导致分子堆积较弱,这可能会产生高能量无序并降低OS-CTLs的电荷传输能力。在此,提出了一种电荷转移络合物(CTC)策略,通过在商用空穴传输层(HTL)聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)中掺杂有机半导体4,4'-(4,8-双(5-(三甲基硅基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩-2,6-二基)双(N,N-双(4-甲氧基苯基)苯胺)(BDT-Si)来降低OS-CTLs中的能量无序。CTC的形成使PTAA共轭主链缺电子,导致醌型和更刚性的特性,这可能使PTAA主链平面化并增强薄膜在纳米尺度上的有序性。所得的HTL表现出降低的能量无序,这同时促进了HTL中的空穴传输、界面处的空穴提取、能级匹配以及器件中的准费米能级分裂。结果,具有优化HTL的p-i-n平面pero-SCs表现出21.87%的最佳功率转换效率以及良好的操作稳定性。这一发现表明,CTC策略是降低HTLs中能量无序并提高平面pero-SCs性能的有效方法。