Suppr超能文献

利用稳定同位素追踪从个体到行星尺度的植物-环境相互作用:一个小型综述。

Tracing plant-environment interactions from organismal to planetary scales using stable isotopes: a mini review.

机构信息

Department of Earth and Environmental Science, University of Illinois at Chicago, Chicago, IL, U.S.A.

Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, U.S.A.

出版信息

Emerg Top Life Sci. 2021 May 21;5(2):301-316. doi: 10.1042/ETLS20200277.

Abstract

Natural isotope variation forms a mosaic of isotopically distinct pools across the biosphere and flows between pools integrate plant ecology with global biogeochemical cycling. Carbon, nitrogen, and water isotopic ratios (among others) can be measured in plant tissues, at root and foliar interfaces, and in adjacent atmospheric, water, and soil environments. Natural abundance isotopes provide ecological insight to complement and enhance biogeochemical research, such as understanding the physiological conditions during photosynthetic assimilation (e.g. water stress) or the contribution of unusual plant water or nutrient sources (e.g. fog, foliar deposition). While foundational concepts and methods have endured through four decades of research, technological improvements that enable measurement at fine spatiotemporal scales, of multiple isotopes, and of isotopomers, are advancing the field of stable isotope ecology. For example, isotope studies now benefit from the maturation of field-portable infrared spectroscopy, which allows the exploration of plant-environment sensitivity at physiological timescales. Isotope ecology is also benefiting from, and contributing to, new understanding of the plant-soil-atmosphere system, such as improving the representation of soil carbon pools and turnover in land surface models. At larger Earth-system scales, a maturing global coverage of isotope data and new data from site networks offer exciting synthesis opportunities to merge the insights of single-or multi-isotope analysis with ecosystem and remote sensing data in a data-driven modeling framework, to create geospatial isotope products essential for studies of global environmental change.

摘要

天然同位素变异在整个生物圈中形成了同位素差异明显的镶嵌体,并在各个库之间流动,将植物生态学与全球生物地球化学循环联系起来。碳、氮和水同位素比(以及其他同位素比)可以在植物组织、根和叶界面以及相邻的大气、水和土壤环境中测量。天然同位素丰度为补充和增强生物地球化学研究提供了生态见解,例如了解光合作用同化过程中的生理条件(例如水分胁迫)或不寻常的植物水分或养分来源(例如雾、叶面沉积)的贡献。虽然基础概念和方法已经在 40 年的研究中得以延续,但能够在精细时空尺度上测量多种同位素和同位体的技术进步正在推动稳定同位素生态学领域的发展。例如,同位素研究现在受益于便携式红外光谱技术的成熟,这使得能够在生理时间尺度上探索植物与环境的敏感性。同位素生态学也受益于对植物-土壤-大气系统的新认识,并为之做出贡献,例如改善了土地表面模型中土壤碳库和周转率的表示。在更大的地球系统尺度上,同位素数据的全球覆盖范围不断成熟,以及来自站点网络的新数据,为在数据驱动的建模框架中融合单同位素或多同位素分析与生态系统和遥感数据的见解提供了令人兴奋的综合机会,以创建对于全球环境变化研究至关重要的地理空间同位素产品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验