Suppr超能文献

基于全尺度连接和递归深层聚合的无锚点方法在 4D 显微镜图像中进行准确快速的有丝分裂检测。

Accurate and fast mitotic detection using an anchor-free method based on full-scale connection with recurrent deep layer aggregation in 4D microscopy images.

机构信息

Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.

Graduate School of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan.

出版信息

BMC Bioinformatics. 2021 Feb 26;22(1):91. doi: 10.1186/s12859-021-04014-w.

Abstract

BACKGROUND

To effectively detect and investigate various cell-related diseases, it is essential to understand cell behaviour. The ability to detection mitotic cells is a fundamental step in diagnosing cell-related diseases. Convolutional neural networks (CNNs) have been successfully applied to object detection tasks, however, when applied to mitotic cell detection, most existing methods generate high false-positive rates due to the complex characteristics that differentiate normal cells from mitotic cells. Cell size and orientation variations in each stage make detecting mitotic cells difficult in 2D approaches. Therefore, effective extraction of the spatial and temporal features from mitotic data is an important and challenging task. The computational time required for detection is another major concern for mitotic detection in 4D microscopic images.

RESULTS

In this paper, we propose a backbone feature extraction network named full scale connected recurrent deep layer aggregation (RDLA++) for anchor-free mitotic detection. We utilize a 2.5D method that includes 3D spatial information extracted from several 2D images from neighbouring slices that form a multi-stream input.

CONCLUSIONS

Our proposed technique addresses the scale variation problem and can efficiently extract spatial and temporal features from 4D microscopic images, resulting in improved detection accuracy and reduced computation time compared with those of other state-of-the-art methods.

摘要

背景

为了有效地检测和研究各种与细胞相关的疾病,了解细胞行为至关重要。检测有丝分裂细胞的能力是诊断细胞相关疾病的基本步骤。卷积神经网络(CNN)已成功应用于目标检测任务,但在应用于有丝分裂细胞检测时,由于正常细胞与有丝分裂细胞之间存在复杂的特征差异,大多数现有方法会产生较高的假阳性率。在 2D 方法中,每个阶段的细胞大小和方向变化使得检测有丝分裂细胞变得困难。因此,有效地从有丝分裂数据中提取空间和时间特征是一项重要且具有挑战性的任务。在 4D 显微镜图像中进行有丝分裂检测的另一个主要问题是检测所需的计算时间。

结果

在本文中,我们提出了一种名为全尺度连接递归深层聚合(RDLA++)的骨干特征提取网络,用于无锚点的有丝分裂检测。我们利用一种 2.5D 方法,该方法包括从相邻切片的几个 2D 图像中提取的 3D 空间信息,形成多流输入。

结论

与其他最先进的方法相比,我们提出的技术解决了尺度变化问题,能够有效地从 4D 显微镜图像中提取空间和时间特征,从而提高检测精度并减少计算时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea7d/7908657/f88670133cd3/12859_2021_4014_Fig1_HTML.jpg

相似文献

2
A Cascade of 2.5D CNN and Bidirectional CLSTM Network for Mitotic Cell Detection in 4D Microscopy Image.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar-Apr;18(2):396-404. doi: 10.1109/TCBB.2019.2919015. Epub 2021 Apr 6.
3
MSPA-DLA++: A Multi-Scale Phase Attention Deep Layer Aggregation for Lesion Detection in Multi-Phase CT Images.
Stud Health Technol Inform. 2024 Jan 25;310:901-905. doi: 10.3233/SHTI231095.
5
DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network.
IEEE Trans Vis Comput Graph. 2020 Jan;26(1):960-970. doi: 10.1109/TVCG.2019.2934369. Epub 2019 Aug 22.
7
DeepBranch: Deep Neural Networks for Branch Point Detection in Biomedical Images.
IEEE Trans Med Imaging. 2020 Apr;39(4):1195-1205. doi: 10.1109/TMI.2019.2945980. Epub 2019 Oct 7.
8
Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection.
Comput Methods Programs Biomed. 2018 Oct;165:215-224. doi: 10.1016/j.cmpb.2018.08.012. Epub 2018 Aug 31.
9
Deep Consensus Network: Aggregating predictions to improve object detection in microscopy images.
Med Image Anal. 2021 May;70:102019. doi: 10.1016/j.media.2021.102019. Epub 2021 Feb 24.
10
Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
IEEE Trans Image Process. 2018;27(1):106-120. doi: 10.1109/TIP.2017.2755766.

本文引用的文献

1
A Cascade of 2.5D CNN and Bidirectional CLSTM Network for Mitotic Cell Detection in 4D Microscopy Image.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar-Apr;18(2):396-404. doi: 10.1109/TCBB.2019.2919015. Epub 2021 Apr 6.
2
Mask R-CNN.
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):386-397. doi: 10.1109/TPAMI.2018.2844175. Epub 2018 Jun 5.
3
Tripolar mitosis in human cells and embryos: occurrence, pathophysiology and medical implications.
Acta Histochem. 2015 Jan;117(1):111-25. doi: 10.1016/j.acthis.2014.11.009. Epub 2014 Dec 29.
4
Mammalian skin cell biology: at the interface between laboratory and clinic.
Science. 2014 Nov 21;346(6212):937-40. doi: 10.1126/science.1253734.
5
Emerging interactions between skin stem cells and their niches.
Nat Med. 2014 Aug;20(8):847-56. doi: 10.1038/nm.3643.
6
Intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis.
PLoS One. 2013;8(2):e57135. doi: 10.1371/journal.pone.0057135. Epub 2013 Feb 25.
8
Automated mitosis detection of stem cell populations in phase-contrast microscopy images.
IEEE Trans Med Imaging. 2011 Mar;30(3):586-96. doi: 10.1109/TMI.2010.2089384.
9
Epicardial spindle orientation controls cell entry into the myocardium.
Dev Cell. 2010 Jul 20;19(1):114-25. doi: 10.1016/j.devcel.2010.06.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验