Suppr超能文献

基于入院时实验室检查结果预测 COVID-19 严重程度:信息价值、阈值、机器学习模型性能。

Prediction of COVID-19 severity using laboratory findings on admission: informative values, thresholds, ML model performance.

机构信息

Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE

Neurology, Mediclinic Middle East Parkview Hospital, Dubai, UAE.

出版信息

BMJ Open. 2021 Feb 26;11(2):e044500. doi: 10.1136/bmjopen-2020-044500.

Abstract

BACKGROUND

Despite the necessity, there is no reliable biomarker to predict disease severity and prognosis of patients with COVID-19. The currently published prediction models are not fully applicable to clinical use.

OBJECTIVES

To identify predictive biomarkers of COVID-19 severity and to justify their threshold values for the stratification of the risk of deterioration that would require transferring to the intensive care unit (ICU).

METHODS

The study cohort (560 subjects) included all consecutive patients admitted to Dubai Mediclinic Parkview Hospital from February to May 2020 with COVID-19 confirmed by the PCR. The challenge of finding the cut-off thresholds was the unbalanced dataset (eg, the disproportion in the number of 72 patients admitted to ICU vs 488 non-severe cases). Therefore, we customised supervised machine learning (ML) algorithm in terms of threshold value used to predict worsening.

RESULTS

With the default thresholds returned by the ML estimator, the performance of the models was low. It was improved by setting the cut-off level to the 25th percentile for lymphocyte count and the 75th percentile for other features. The study justified the following threshold values of the laboratory tests done on admission: lymphocyte count <2.59×10/L, and the upper levels for total bilirubin 11.9 μmol/L, alanine aminotransferase 43 U/L, aspartate aminotransferase 32 U/L, D-dimer 0.7 mg/L, activated partial thromboplastin time (aPTT) 39.9 s, creatine kinase 247 U/L, C reactive protein (CRP) 14.3 mg/L, lactate dehydrogenase 246 U/L, troponin 0.037 ng/mL, ferritin 498 ng/mL and fibrinogen 446 mg/dL.

CONCLUSION

The performance of the neural network trained with top valuable tests (aPTT, CRP and fibrinogen) is admissible (area under the curve (AUC) 0.86; 95% CI 0.486 to 0.884; p<0.001) and comparable with the model trained with all the tests (AUC 0.90; 95% CI 0.812 to 0.902; p<0.001). Free online tool at https://med-predict.com illustrates the study results.

摘要

背景

尽管有必要,但目前还没有可靠的生物标志物来预测 COVID-19 患者的疾病严重程度和预后。目前发表的预测模型还不能完全适用于临床应用。

目的

确定 COVID-19 严重程度的预测生物标志物,并确定其阈值,以便对需要转入重症监护病房(ICU)的病情恶化风险进行分层。

方法

研究队列(560 例患者)包括 2020 年 2 月至 5 月期间因 COVID-19 在迪拜医疗中心公园医院住院并经 PCR 确诊的所有连续患者。找到截断阈值的挑战在于数据集不平衡(例如,入住 ICU 的 72 例患者与 488 例非重症患者的数量不成比例)。因此,我们根据用于预测病情恶化的阈值,对有监督机器学习(ML)算法进行了定制。

结果

使用 ML 估计器返回的默认阈值,模型的性能较低。通过将淋巴细胞计数的截断水平设置为第 25 百分位,其他特征的截断水平设置为第 75 百分位,可提高模型的性能。该研究确定了入院时实验室检查的以下阈值值:淋巴细胞计数<2.59×10/L,总胆红素上限为 11.9 μmol/L,丙氨酸氨基转移酶 43 U/L,天门冬氨酸氨基转移酶 32 U/L,D-二聚体 0.7 mg/L,活化部分凝血活酶时间(aPTT)39.9 s,肌酸激酶 247 U/L,C 反应蛋白(CRP)14.3 mg/L,乳酸脱氢酶 246 U/L,肌钙蛋白 0.037 ng/mL,铁蛋白 498 ng/mL 和纤维蛋白原 446 mg/dL。

结论

用最有价值的测试(aPTT、CRP 和纤维蛋白原)训练的神经网络的性能是可以接受的(曲线下面积(AUC)为 0.86;95%CI 为 0.486 至 0.884;p<0.001),与用所有测试训练的模型相当(AUC 为 0.90;95%CI 为 0.812 至 0.902;p<0.001)。免费在线工具 https://med-predict.com 展示了研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd5/7918887/722b902f3caa/bmjopen-2020-044500f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验