Suppr超能文献

使用机器学习计算COVID-19患者入住重症监护病房的风险

Calculating the Risk of Admission to Intensive Care Units in COVID-19 Patients Using Machine Learning.

作者信息

Ladios-Martin Mireia, Cabañero-Martínez María José, Fernández-de-Maya José, Ballesta-López Francisco-Javier, Garcia-Garcia Ignacio, Belso-Garzas Adrián, Aznar-Zamora Francisco-Manuel, Cabrero-García Julio

机构信息

Grupo Ribera, Edificio Sorolla Center, Avda Cortes Valencianas, 58, 46015 Valencia, Spain.

Nursing Department, University of Alicante, 03690 San Vicente del Raspeig, Spain.

出版信息

J Clin Med. 2025 Jun 13;14(12):4205. doi: 10.3390/jcm14124205.

Abstract

The COVID-19 pandemic clearly posed a global challenge to healthcare systems, where the allocation of limited resources had important logistical and ethical implications. Detecting and prioritizing the population at risk of intensive care unit (ICU) admission is the first step to being able to care for the most vulnerable people and avoid unnecessary consumption of resources by mildly ill patients. To create a model, using machine learning techniques, capable of identifying the risk of admission to the ICU throughout the hospital stay of the COVID patient and to evaluate the performance of the model. A retrospective cohort design was used to develop and validate a classification model of adult COVID-19 patients with or without risk of ICU admission. Data from three hospitals in Spain were used to develop the model ( = 1272) and for subsequent external validation ( = 550). Sensitivity, specificity, positive and negative predictive value, accuracy, F1 score, Youden index and area under the curve of the model were evaluated. The LightGBM model, incorporating 40 variables, was used. The area under the curve obtained by the model when the test dataset was used was 1.00 (0.99-1.0), specificity 0.99 (0.97-1.00) and sensitivity 0.92 (0.86-0.98). A model for predicting ICU admission of hospitalized COVID-19 patients was created with very good results. The identification and prioritization of COVID-19 patients at risk of ICU admission allows the right care to be provided to those who are most in need when the healthcare system is under pressure.

摘要

新冠疫情显然给医疗系统带来了全球性挑战,在这种情况下,有限资源的分配具有重要的后勤和伦理意义。识别有重症监护病房(ICU)收治风险的人群并确定其优先级,是能够照顾最脆弱人群并避免轻症患者不必要资源消耗的第一步。为创建一个使用机器学习技术的模型,该模型能够在新冠患者的整个住院期间识别其进入ICU的风险,并评估该模型的性能。采用回顾性队列设计来开发和验证成年新冠患者有无ICU收治风险的分类模型。西班牙三家医院的数据用于开发模型(n = 1272)并进行后续外部验证(n = 550)。评估了模型的敏感性、特异性、阳性和阴性预测值、准确性、F1分数、约登指数和曲线下面积。使用了包含40个变量的LightGBM模型。使用测试数据集时,该模型获得的曲线下面积为1.00(0.99 - 1.0),特异性为0.99(0.97 - 1.00),敏感性为0.92(0.86 - 0.98)。创建了一个预测住院新冠患者进入ICU风险的模型,结果非常好。识别有ICU收治风险的新冠患者并确定其优先级,能够在医疗系统面临压力时为最有需要的人提供恰当的护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6287/12193729/3a779fffd683/jcm-14-04205-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验