Suppr超能文献

临床前安全性和非预期药理学数据的 FAIR 共享指南。

Guidelines for FAIR sharing of preclinical safety and off-target pharmacology data.

机构信息

Lhasa Limited, Leeds, UK.

EMBL-EBI, Wellcome Genome Campus, Cambridge, UK.

出版信息

ALTEX. 2021;38(2):187-197. doi: 10.14573/altex.2011181. Epub 2021 Feb 25.

Abstract

Pre-competitive data sharing can offer the pharmaceutical industry significant benefits in terms of reducing the time and costs involved in getting a new drug to market through more informed testing strategies and knowledge gained by pooling data. If sufficient data is shared and can be co-analyzed, then it can also offer the potential for reduced animal usage and improvements in the in silico prediction of toxicological effects. Data sharing benefits can be further enhanced by applying the FAIR Guiding Principles, reducing time spent curating, transforming and aggregating datasets and allowing more time for data mining and analysis. We hope to facilitate data sharing by other organizations and initiatives by describing lessons learned as part of the Enhancing TRANslational SAFEty Assessment through Integrative Knowledge Management (eTRANSAFE) project, an Innovative Medicines Initiative (IMI) partnership which aims to integrate publicly available data sources with proprietary preclinical and clinical data donated by pharmaceutical organizations. Methods to foster trust and overcome non-technical barriers to data sharing such as legal and IPR (intellectual property rights) are described, including the security requirements that pharmaceutical organizations generally expect to be met. We share the consensus achieved among pharmaceutical partners on decision criteria to be included in internal clearance pro­cedures used to decide if data can be shared. We also report on the consensus achieved on specific data fields to be excluded from sharing for sensitive preclinical safety and pharmacology data that could otherwise not be shared.

摘要

预竞争数据共享可以为制药行业带来显著的好处,通过更明智的测试策略和数据共享获得的知识,缩短新药推向市场的时间和成本。如果共享了足够的数据并且可以进行联合分析,那么还可以减少动物的使用,并提高毒理学效应的计算预测能力。通过应用 FAIR 指导原则,可以进一步提高数据共享的效益,减少整理、转换和聚合数据集的时间,并为数据挖掘和分析留出更多时间。我们希望通过描述在 Enhancing TRANslational SAFEty Assessment through Integrative Knowledge Management (eTRANSAFE) 项目中获得的经验教训,来促进其他组织和倡议的数据共享,该项目是一个创新药物倡议 (IMI) 的合作伙伴关系,旨在将公开可用的数据源与制药组织捐赠的专有临床前和临床数据集成。本文描述了促进信任和克服数据共享的非技术障碍(如法律和知识产权 (IPR))的方法,包括制药组织通常期望满足的安全要求。我们分享了制药合作伙伴就内部清除程序中包含的决策标准达成的共识,这些标准用于决定是否可以共享数据。我们还报告了在共享敏感临床前安全性和药理学数据方面达成的共识,这些数据可以排除在共享之外,否则无法共享。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验