Nowak Artur, Legeza Örs, Boguslawski Katharina
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Torun, Poland.
Strongly Correlated Systems "Lendület" Research Group, Wigner Research Center for Physics, H-1525 Budapest, Hungary.
J Chem Phys. 2021 Feb 28;154(8):084111. doi: 10.1063/5.0038205.
Wave functions based on electron-pair states provide inexpensive and reliable models to describe quantum many-body problems containing strongly correlated electrons, given that broken-pair states have been appropriately accounted for by, for instance, a posteriori corrections. In this article, we analyze the performance of electron-pair methods in predicting orbital-based correlation spectra. We focus on the (orbital-optimized) pair-coupled cluster doubles (pCCD) ansatz with a linearized coupled-cluster (LCC) correction. Specifically, we scrutinize how orbital-based entanglement and correlation measures can be determined from a pCCD-tailored CC wave function. Furthermore, we employ the single-orbital entropy, the orbital-pair mutual information, and the eigenvalue spectra of the two-orbital reduced density matrices to benchmark the performance of the LCC correction for the one-dimensional Hubbard model with the periodic boundary condition as well as the N and F molecules against density matrix renormalization group reference calculations. Our study indicates that pCCD-LCC accurately reproduces the orbital-pair correlation patterns in the weak correlation limit and for molecules close to their equilibrium structure. Hence, we can conclude that pCCD-LCC predicts reliable wave functions in this regime.
基于电子对态的波函数提供了廉价且可靠的模型,用于描述包含强关联电子的量子多体问题,前提是诸如后验修正等方法已恰当地考虑了破对态。在本文中,我们分析了电子对方法在预测基于轨道的关联谱方面的性能。我们聚焦于带有线性化耦合簇(LCC)修正的(轨道优化的)对耦合簇双激发(pCCD)假设。具体而言,我们仔细研究了如何从针对pCCD定制的耦合簇波函数确定基于轨道的纠缠和关联度量。此外,我们利用单轨道熵、轨道对互信息以及双轨道约化密度矩阵的本征值谱,针对具有周期边界条件的一维哈伯德模型以及N和F分子,与密度矩阵重整化群参考计算进行对比,以此来衡量LCC修正的性能。我们的研究表明,pCCD-LCC在弱关联极限以及分子接近其平衡结构时,能准确再现轨道对关联模式。因此,我们可以得出结论,在该区域中pCCD-LCC能预测可靠的波函数。