Skomorowski Wojciech, Krylov Anna I
Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.
J Chem Phys. 2021 Feb 28;154(8):084125. doi: 10.1063/5.0036977.
X-ray photon absorption leads to the creation of highly excited species, which often decay through the Auger process. The theoretical treatment of Auger decay is challenging because of the resonance nature of the initial core-excited or core-ionized states and the continuous nature of the ejected electron. In Paper I [W. Skomorowski and A. I. Krylov, J. Chem. Phys. 154, 084124 (2021)], we have introduced a theoretical framework for computing Auger rates based on the Feshbach-Fano approach and the equation-of-motion coupled-cluster ansätze augmented with core-valence separation. The outgoing Auger electron is described with a continuum orbital. We considered two approximate descriptions-a plane wave and a Coulomb wave with an effective charge. Here, we use the developed methodology to calculate Auger transition rates in core-ionized and core-excited benchmark systems (Ne, HO, CH, and CO). Comparison with the available experimental spectra shows that the proposed computational scheme provides reliable ab initio predictions of the Auger spectra. The reliability, cost efficiency, and robust computational setup of this methodology offer advantages in applications to a large variety of systems.
X射线光子吸收会导致产生高激发态物种,这些物种通常通过俄歇过程衰变。由于初始核激发态或核电离态的共振性质以及出射电子的连续性质,对俄歇衰变进行理论处理具有挑战性。在第一篇论文[W. 斯科莫罗夫斯基和A. I. 克里洛夫,《化学物理杂志》154, 084124 (2021)]中,我们基于费什巴赫 - 法诺方法以及通过核价分离增强的运动方程耦合簇近似,引入了一个用于计算俄歇速率的理论框架。出射的俄歇电子用连续轨道来描述。我们考虑了两种近似描述——平面波和具有有效电荷的库仑波。在此,我们使用所开发的方法来计算核电离和核激发基准体系(Ne、HO、CH和CO)中的俄歇跃迁速率。与现有的实验光谱进行比较表明,所提出的计算方案能够提供可靠的俄歇光谱从头算预测。该方法的可靠性、成本效益以及稳健的计算设置在应用于各种体系时具有优势。