Suppr超能文献

使用运动方程耦合簇波函数计算俄歇衰变率的费什巴赫 - 法诺方法。I. 理论与实现

Feshbach-Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation.

作者信息

Skomorowski Wojciech, Krylov Anna I

机构信息

Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.

出版信息

J Chem Phys. 2021 Feb 28;154(8):084124. doi: 10.1063/5.0036976.

Abstract

X-ray absorption creates electron vacancies in the core shell. These highly excited states often relax by Auger decay-an autoionization process in which one valence electron fills the core hole and another valence electron is ejected into the ionization continuum. Despite the important role of Auger processes in many experimental settings, their first-principles modeling is challenging, even for small systems. The difficulty stems from the need to describe many-electron continuum (unbound) states, which cannot be tackled with standard quantum-chemistry methods. We present a novel approach to calculate Auger decay rates by combining Feshbach-Fano resonance theory with the equation-of-motion coupled-cluster single double (EOM-CCSD) framework. We use the core-valence separation scheme to define projectors into the bound (square-integrable) and unbound (continuum) subspaces of the full function space. The continuum many-body decay states are represented by products of an appropriate EOM-CCSD state and a free-electron state, described by a continuum orbital. The Auger rates are expressed in terms of reduced quantities, two-body Dyson amplitudes (objects analogous to the two-particle transition density matrix), contracted with two-electron bound-continuum integrals. Here, we consider two approximate treatments of the free electron: a plane wave and a Coulomb wave with an effective charge, which allow us to evaluate all requisite integrals analytically; however, the theory can be extended to incorporate a more sophisticated description of the continuum orbital.

摘要

X射线吸收在核心壳层中产生电子空位。这些高激发态通常通过俄歇衰变弛豫——这是一种自电离过程,其中一个价电子填充核心空穴,另一个价电子被喷射到电离连续区。尽管俄歇过程在许多实验环境中起着重要作用,但即使对于小系统,其第一性原理建模也具有挑战性。困难源于需要描述多电子连续区(非束缚)态,而这无法用标准量子化学方法解决。我们提出了一种新方法,通过将费什巴赫 - 法诺共振理论与运动方程耦合簇单双激发(EOM - CCSD)框架相结合来计算俄歇衰变率。我们使用芯价分离方案来定义投影算符到全函数空间的束缚(平方可积)和非束缚(连续区)子空间。连续区多体衰变态由适当的EOM - CCSD态与自由电子态的乘积表示,自由电子态由连续区轨道描述。俄歇率用约化量表示,即与双电子束缚 - 连续区积分收缩的两体戴森振幅(类似于两粒子跃迁密度矩阵的对象)。在这里,我们考虑对自由电子的两种近似处理:平面波和具有有效电荷的库仑波,这使我们能够解析地评估所有必要积分;然而,该理论可以扩展以纳入对连续区轨道更复杂的描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验