Suppr超能文献

基于增强 MRI 的影像组学列线图预测巨梁型/块状型肝细胞癌

A radiomics nomogram based on contrast-enhanced MRI for preoperative prediction of macrotrabecular-massive hepatocellular carcinoma.

机构信息

Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.

Department of Radiology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China.

出版信息

Abdom Radiol (NY). 2021 Jul;46(7):3139-3148. doi: 10.1007/s00261-021-02989-x. Epub 2021 Feb 27.

Abstract

BACKGROUND

Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) represents an aggressive form of hepatocellular carcinoma and is associated with poor survival outcomes.

AIMS

This study aimed to develop a radiomics nomogram based on contrast-enhanced MRI for preoperative prediction of MTM-HCC.

METHODS

This study enrolled 88 patients with histologically confirmed HCC, including 32 MTM-HCCs and 56 Non-MTM-HCCs. The clinical and gadobenate dimeglumine (Gd)-enhanced MRI features were retrospectively reviewed by two abdominal radiologists. The regions of interest (ROIs) on the largest cross-sectional image and two adjacent images of the tumor, from which radiomics features were extracted via MaZda software and a radiomics score (Rad-score) was calculated via Python software. Combined with the Rad-score and independent imaging factors, a radiomics nomogram was constructed using R software. Nomogram performance was estimated with calibration curve.

RESULTS

A total of eleven top weighted radiomics features were selected among five sequences of MR images. There was a significant difference in Rad-score between MTM-HCC and non-MTM-HCC patients (P < 0.001), where patients with MTM-HCC generally had higher Rad-scores (absolute value). After multivariate analysis, radiomics score (OR = 7.794, P < 0.001) and intratumor fat (OR = 9.963, P = 0.014) were determined as independent predictors associated with MTM-HCC. The area under the receiver operating characteristic (ROC) curve of the selected model was 0.813 (95% CI 0.714-0.912) and the optimal cutoff value was 0.60. The nomogram showed overall satisfactory prediction performance (AUC = 0.785 [95% CI 0.684-0.886]).

CONCLUSIONS

A contrast-enhanced MRI-based radiomics nomogram may be useful for preoperative prediction of MTM-HCC in primary HCC patients, allowing opportunity to improve the treatment course and patient outcomes.

摘要

背景

巨梁型-块状肝细胞癌(MTM-HCC)是一种侵袭性较强的肝癌,与不良的生存结局相关。

目的

本研究旨在建立一种基于对比增强磁共振成像的放射组学列线图,用于术前预测 MTM-HCC。

方法

本研究纳入了 88 例经组织学证实的 HCC 患者,包括 32 例 MTM-HCC 和 56 例非 MTM-HCC。两名腹部放射科医生回顾性分析了患者的临床和钆喷酸葡胺(Gd)增强 MRI 特征。从肿瘤最大横截面上的感兴趣区(ROI)和两个相邻的图像中提取放射组学特征,使用 MaZda 软件计算放射组学评分(Rad-score),并使用 Python 软件计算 Rad-score。结合 Rad-score 和独立的影像学因素,使用 R 软件构建放射组学列线图。使用校准曲线评估列线图的性能。

结果

在 5 种 MR 序列图像中,共选择了 11 个具有最高权重的放射组学特征。MTM-HCC 和非 MTM-HCC 患者的 Rad-score 存在显著差异(P<0.001),其中 MTM-HCC 患者的 Rad-score 通常较高(绝对值)。多因素分析后,放射组学评分(OR=7.794,P<0.001)和肿瘤内脂肪(OR=9.963,P=0.014)被确定为与 MTM-HCC 相关的独立预测因素。该模型的受试者工作特征曲线下面积为 0.813(95%CI 0.714-0.912),最佳截断值为 0.60。列线图显示出总体令人满意的预测性能(AUC=0.785 [95%CI 0.684-0.886])。

结论

基于对比增强磁共振成像的放射组学列线图可用于预测原发性 HCC 患者的 MTM-HCC,为改善治疗方案和患者结局提供机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验