Suppr超能文献

基于动态对比增强磁共振成像的放射组学术前预测巨梁型/块状型肝细胞癌。

Preoperative prediction of macrotrabecular-massive hepatocellular carcinoma through dynamic contrast-enhanced magnetic resonance imaging-based radiomics.

机构信息

Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China.

Precision Health Institution, General Electric Healthcare, Hangzhou 310014, Zhejiang Province, China.

出版信息

World J Gastroenterol. 2023 Apr 7;29(13):2001-2014. doi: 10.3748/wjg.v29.i13.2001.

Abstract

BACKGROUND

Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) is closely related to aggressive phenotype, gene mutation, carcinogenic pathway, and immunohistochemical markers and is a strong independent predictor of early recurrence and poor prognosis. With the development of imaging technology, successful applications of contrast-enhanced magnetic resonance imaging (MRI) have been reported in identifying the MTM-HCC subtype. Radiomics, as an objective and beneficial method for tumour evaluation, is used to convert medical images into high-throughput quantification features that greatly push the development of precision medicine.

AIM

To establish and verify a nomogram for preoperatively identifying MTM-HCC by comparing different machine learning algorithms.

METHODS

This retrospective study enrolled 232 (training set, 162; test set, 70) hepatocellular carcinoma patients from April 2018 to September 2021. A total of 3111 radiomics features were extracted from dynamic contrast-enhanced MRI, followed by dimension reduction of these features. Logistic regression (LR), K-nearest neighbour (KNN), Bayes, Tree, and support vector machine (SVM) algorithms were used to select the best radiomics signature. We used the relative standard deviation (RSD) and bootstrap methods to quantify the stability of these five algorithms. The algorithm with the lowest RSD represented the best stability, and it was used to construct the best radiomics model. Multivariable logistic analysis was used to select the useful clinical and radiological features, and different predictive models were established. Finally, the predictive performances of the different models were assessed by evaluating the area under the curve (AUC).

RESULTS

The RSD values based on LR, KNN, Bayes, Tree, and SVM were 3.8%, 8.6%, 4.3%, 17.7%, and 17.4%, respectively. Therefore, the LR machine learning algorithm was selected to construct the best radiomics signature, which performed well with AUCs of 0.766 and 0.739 in the training and test sets, respectively. In the multivariable analysis, age [odds ratio (OR) = 0.956, = 0.034], alpha-fetoprotein (OR = 10.066, < 0.001), tumour size (OR = 3.316, = 0.002), tumour-to-liver apparent diffusion coefficient (ADC) ratio (OR = 0.156, = 0.037), and radiomics score (OR = 2.923, < 0.001) were independent predictors of MTM-HCC. Among the different models, the predictive performances of the clinical-radiomics model and radiological-radiomics model were significantly improved compared to those of the clinical model (AUCs: 0.888 0.836, = 0.046) and radiological model (AUCs: 0.796 0.688, = 0.012), respectively, in the training set, highlighting the improved predictive performance of radiomics. The nomogram performed best, with AUCs of 0.896 and 0.805 in the training and test sets, respectively.

CONCLUSION

The nomogram containing radiomics, age, alpha-fetoprotein, tumour size, and tumour-to-liver ADC ratio revealed excellent predictive ability in preoperatively identifying the MTM-HCC subtype.

摘要

背景

巨梁型-块状肝细胞癌(MTM-HCC)与侵袭性表型、基因突变、致癌途径和免疫组织化学标志物密切相关,是早期复发和预后不良的强有力独立预测因子。随着成像技术的发展,对比增强磁共振成像(MRI)在识别 MTM-HCC 亚型方面的成功应用已有报道。放射组学作为一种用于肿瘤评估的客观且有益的方法,可将医学图像转换为高通量的定量特征,极大地推动了精准医学的发展。

目的

通过比较不同的机器学习算法,建立并验证一种用于术前识别 MTM-HCC 的列线图。

方法

本回顾性研究纳入了 2018 年 4 月至 2021 年 9 月期间的 232 例肝细胞癌患者(训练集 162 例,测试集 70 例)。从动态对比增强 MRI 中提取了 3111 个放射组学特征,然后对这些特征进行降维。采用逻辑回归(LR)、K-最近邻(KNN)、贝叶斯、树和支持向量机(SVM)算法来选择最佳的放射组学特征。我们使用相对标准偏差(RSD)和自举方法来量化这 5 种算法的稳定性。RSD 最低的算法代表了最佳的稳定性,并用于构建最佳的放射组学模型。采用多变量逻辑分析来选择有用的临床和放射学特征,并建立不同的预测模型。最后,通过评估曲线下面积(AUC)来评估不同模型的预测性能。

结果

基于 LR、KNN、贝叶斯、树和 SVM 的 RSD 值分别为 3.8%、8.6%、4.3%、17.7%和 17.4%。因此,选择 LR 机器学习算法来构建最佳的放射组学特征,在训练集和测试集中的 AUC 分别为 0.766 和 0.739,表现良好。在多变量分析中,年龄 [比值比(OR)=0.956, =0.034]、甲胎蛋白(OR=10.066, <0.001)、肿瘤大小(OR=3.316, =0.002)、肿瘤与肝脏表观扩散系数(ADC)比值(OR=0.156, =0.037)和放射组学评分(OR=2.923, <0.001)是 MTM-HCC 的独立预测因子。在不同的模型中,与临床模型(AUC:0.888 vs. 0.836, =0.046)和放射学模型(AUC:0.796 vs. 0.688, =0.012)相比,临床-放射组学模型和放射学-放射组学模型的预测性能均显著提高,凸显了放射组学的预测性能得到了改善。列线图表现最佳,在训练集和测试集中的 AUC 分别为 0.896 和 0.805。

结论

包含放射组学、年龄、甲胎蛋白、肿瘤大小和肿瘤与肝脏 ADC 比值的列线图在术前识别 MTM-HCC 亚型方面具有出色的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aaa/10122786/9029b4f7ac02/WJG-29-2001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验