Suppr超能文献

从可调的、与序列相关的物理化学性质估算血清中肽的半衰期。

Estimating peptide half-life in serum from tunable, sequence-related physicochemical properties.

机构信息

Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.

Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.

出版信息

Clin Transl Sci. 2021 Jul;14(4):1349-1358. doi: 10.1111/cts.12985. Epub 2021 Feb 28.

Abstract

Proteolytic instability is a critical limitation for peptide-based products. Although significant efforts are devoted to stabilize sequences against proteases/peptidases in plasma/serum, such approaches tend to be rather empirical, unspecific, time-consuming, and frequently not cost-effective. A more rational and potentially rewarding alternative is to identify the chemical grounds of susceptibility to enzymatic degradation of peptides so that proteolytic resistance can be tuned by manipulation of key chemical properties. In this regard, we conducted a meta-analysis of literature published over the last decade reporting experimental data on the lifetimes of peptides exposed to proteolytic conditions. Our initial database contained 579 entries and was curated with regard to amino acid sequence, chemical modification, terminal half-life (t ) or other stability readouts, type of stability assay, and biological application of the study. Although the majority of entries in the database corresponded to (slightly or substantially) modified peptides, we chose to focus on unmodified ones, as we aimed to decipher intrinsic characteristics of peptide proteolytic susceptibility. Specifically, we developed a multivariable regression model to unravel those peptide properties with most impact on proteolytic stability and thus potential t predicting ability. Model validation was done by two different approaches. First, a library of peptides spanning a large interval of properties that modulate stability was synthesized and their t in human serum were experimentally determined. Second, the t of 21 selected peptides approved for clinical use or in clinical trials were recorded and matched with the model-estimated values. With both approaches, good correlation between experimental and predicted t data was observed.

摘要

蛋白水解不稳定性是基于肽的产品的一个关键限制。虽然人们投入了大量精力来稳定肽序列以抵抗血浆/血清中的蛋白酶/肽酶,但这些方法往往是经验性的、非特异性的、耗时的,并且常常不具有成本效益。一种更合理且有潜力的替代方法是确定肽易被酶降解的化学基础,以便通过操纵关键化学性质来调整其抗蛋白水解性。在这方面,我们对过去十年发表的报告肽在暴露于蛋白水解条件下的寿命的实验数据的文献进行了荟萃分析。我们的初始数据库包含 579 条条目,并针对氨基酸序列、化学修饰、末端半衰期(t)或其他稳定性读数、稳定性测定类型以及研究的生物学应用进行了编辑。尽管数据库中的大多数条目对应于(略有或大幅)修饰的肽,但我们选择专注于未修饰的肽,因为我们旨在揭示肽蛋白水解易感性的内在特征。具体来说,我们开发了一个多变量回归模型,以揭示对蛋白水解稳定性影响最大的那些肽性质,从而具有潜在的 t 预测能力。通过两种不同的方法进行了模型验证。首先,合成了一个跨越性质的较大区间的肽文库,这些性质可以调节稳定性,并通过实验测定了它们在人血清中的 t。其次,记录了 21 种经临床批准或在临床试验中使用的选定肽的 t,并将其与模型估计值相匹配。在这两种方法中,都观察到实验和预测的 t 数据之间的良好相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4d7/8301568/e6fd6711b5b8/CTS-14-1349-g001.jpg

相似文献

1
Estimating peptide half-life in serum from tunable, sequence-related physicochemical properties.
Clin Transl Sci. 2021 Jul;14(4):1349-1358. doi: 10.1111/cts.12985. Epub 2021 Feb 28.
2
Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum.
PLoS One. 2017 Jun 2;12(6):e0178943. doi: 10.1371/journal.pone.0178943. eCollection 2017.
3
Designing of peptides with desired half-life in intestine-like environment.
BMC Bioinformatics. 2014 Aug 20;15(1):282. doi: 10.1186/1471-2105-15-282.
4
Rapid profiling of peptide stability in proteolytic environments.
Anal Chem. 2009 Feb 15;81(4):1580-6. doi: 10.1021/ac802324f.
5
Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability.
Biomacromolecules. 2016 Feb 8;17(2):437-45. doi: 10.1021/acs.biomac.5b01319. Epub 2016 Jan 25.
6
An in vitro selection strategy for conferring protease resistance to ligand binding peptides.
Protein Eng Des Sel. 2009 Nov;22(11):691-8. doi: 10.1093/protein/gzp052. Epub 2009 Sep 15.
7
In vitro metabolic stability of iodinated obestatin peptides.
Peptides. 2012 Feb;33(2):272-8. doi: 10.1016/j.peptides.2011.12.010. Epub 2011 Dec 27.
8
Early engineering approaches to improve peptide developability and manufacturability.
AAPS J. 2015 Jan;17(1):111-20. doi: 10.1208/s12248-014-9681-9. Epub 2014 Oct 23.
9
Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides.
Clin Pharmacokinet. 2013 Oct;52(10):855-68. doi: 10.1007/s40262-013-0079-0.

引用本文的文献

1
The antimicrobial peptide Angie 5 inhibits TcdA and TcdB from Clostridioides difficile.
Cell Mol Life Sci. 2025 Jun 30;82(1):265. doi: 10.1007/s00018-025-05799-2.
3
New Trends in Brain Shuttle Peptides.
Mol Pharm. 2025 Mar 3;22(3):1100-1109. doi: 10.1021/acs.molpharmaceut.4c01327. Epub 2025 Feb 3.
4
A claudin5-binding peptide enhances the permeability of the blood-brain barrier in vitro.
Sci Adv. 2025 Jan 10;11(2):eadq2616. doi: 10.1126/sciadv.adq2616.
5
Design of Natterins-based peptides improves antimicrobial and antiviral activities.
Biotechnol Rep (Amst). 2024 Nov 28;45:e00867. doi: 10.1016/j.btre.2024.e00867. eCollection 2025 Mar.
8
PyAMPA: a high-throughput prediction and optimization tool for antimicrobial peptides.
mSystems. 2024 Jul 23;9(7):e0135823. doi: 10.1128/msystems.01358-23. Epub 2024 Jun 27.
9
Molecular determinants for brain targeting by peptides: a meta-analysis approach with experimental validation.
Fluids Barriers CNS. 2024 May 27;21(1):45. doi: 10.1186/s12987-024-00545-5.
10
Deep learning tools to accelerate antibiotic discovery.
Expert Opin Drug Discov. 2023 Jul-Dec;18(11):1245-1257. doi: 10.1080/17460441.2023.2250721. Epub 2023 Oct 18.

本文引用的文献

1
The Challenge of Peptide Proteolytic Stability Studies: Scarce Data, Difficult Readability, and the Need for Harmonization.
Angew Chem Int Ed Engl. 2021 Jan 25;60(4):1686-1688. doi: 10.1002/anie.202006372. Epub 2020 Nov 17.
3
Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.
Bioorg Med Chem. 2018 Jun 1;26(10):2759-2765. doi: 10.1016/j.bmc.2018.01.012. Epub 2018 Jan 31.
4
Peptibodies: An elegant solution for a long-standing problem.
Biopolymers. 2017 Dec 21. doi: 10.1002/bip.23095.
5
Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum.
PLoS One. 2017 Jun 2;12(6):e0178943. doi: 10.1371/journal.pone.0178943. eCollection 2017.
6
PEPlife: A Repository of the Half-life of Peptides.
Sci Rep. 2016 Nov 7;6:36617. doi: 10.1038/srep36617.
7
Chemically modified peptides and proteins - critical considerations for oral delivery.
Tissue Barriers. 2016 Mar 3;4(2):e1156805. doi: 10.1080/21688370.2016.1156805. eCollection 2016 Apr-Jun.
8
Peptide Backbone Composition and Protease Susceptibility: Impact of Modification Type, Position, and Tandem Substitution.
Chembiochem. 2016 Apr 15;17(8):712-8. doi: 10.1002/cbic.201500312. Epub 2015 Aug 20.
9
Current challenges in peptide-based drug discovery.
Front Chem. 2014 Aug 8;2:62. doi: 10.3389/fchem.2014.00062. eCollection 2014.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验