Suppr超能文献

深度学习工具加速抗生素发现。

Deep learning tools to accelerate antibiotic discovery.

机构信息

Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, PhiladelphiaPA, USA.

出版信息

Expert Opin Drug Discov. 2023 Jul-Dec;18(11):1245-1257. doi: 10.1080/17460441.2023.2250721. Epub 2023 Oct 18.

Abstract

INTRODUCTION

As machine learning (ML) and artificial intelligence (AI) expand to many segments of our society, they are increasingly being used for drug discovery. Recent deep learning models offer an efficient way to explore high-dimensional data and design compounds with desired properties, including those with antibacterial activity.

AREAS COVERED

This review covers key frameworks in antibiotic discovery, highlighting physicochemical features and addressing dataset limitations. The deep learning approaches here described include discriminative models such as convolutional neural networks, recurrent neural networks, graph neural networks, and generative models like neural language models, variational autoencoders, generative adversarial networks, normalizing flow, and diffusion models. As the integration of these approaches in drug discovery continues to evolve, this review aims to provide insights into promising prospects and challenges that lie ahead in harnessing such technologies for the development of antibiotics.

EXPERT OPINION

Accurate antimicrobial prediction using deep learning faces challenges such as imbalanced data, limited datasets, experimental validation, target strains, and structure. The integration of deep generative models with bioinformatics, molecular dynamics, and data augmentation holds the potential to overcome these challenges, enhance model performance, and utlimately accelerate antimicrobial discovery.

摘要

简介

随着机器学习(ML)和人工智能(AI)扩展到我们社会的许多领域,它们越来越多地被用于药物发现。最近的深度学习模型提供了一种高效的方法来探索高维数据,并设计具有所需特性的化合物,包括具有抗菌活性的化合物。

涵盖领域

本综述涵盖了抗生素发现的关键框架,强调了物理化学特性,并解决了数据集的局限性。这里描述的深度学习方法包括判别模型,如卷积神经网络、循环神经网络、图神经网络,以及生成模型,如神经语言模型、变分自编码器、生成对抗网络、归一化流和扩散模型。随着这些方法在药物发现中的不断整合,本综述旨在提供有关利用这些技术开发抗生素的有前景的前景和挑战的见解。

专家意见

使用深度学习进行准确的抗菌预测面临着一些挑战,如数据不平衡、数据集有限、实验验证、靶菌株和结构。将深度生成模型与生物信息学、分子动力学和数据增强相结合,有可能克服这些挑战、提高模型性能,并最终加速抗菌药物的发现。

相似文献

1
Deep learning tools to accelerate antibiotic discovery.深度学习工具加速抗生素发现。
Expert Opin Drug Discov. 2023 Jul-Dec;18(11):1245-1257. doi: 10.1080/17460441.2023.2250721. Epub 2023 Oct 18.
2
The power of deep learning to ligand-based novel drug discovery.深度学习在基于配体的新药发现中的作用。
Expert Opin Drug Discov. 2020 Jul;15(7):755-764. doi: 10.1080/17460441.2020.1745183. Epub 2020 Mar 31.
7
Recent Progress of Deep Learning in Drug Discovery.深度学习在药物发现中的最新进展。
Curr Pharm Des. 2021;27(17):2088-2096. doi: 10.2174/1381612827666210129123231.

引用本文的文献

1
Advancements in AI-driven drug sensitivity testing research.人工智能驱动的药物敏感性测试研究进展。
Front Cell Infect Microbiol. 2025 May 2;15:1560569. doi: 10.3389/fcimb.2025.1560569. eCollection 2025.
2
Novel Antibacterial Approaches and Therapeutic Strategies.新型抗菌方法与治疗策略
Antibiotics (Basel). 2025 Apr 15;14(4):404. doi: 10.3390/antibiotics14040404.
5
How AI can help us beat AMR.人工智能如何助力我们战胜抗菌药物耐药性。
NPJ Antimicrob Resist. 2025 Mar 13;3(1):18. doi: 10.1038/s44259-025-00085-4.
10
An explainable deep learning platform for molecular discovery.用于分子发现的可解释深度学习平台。
Nat Protoc. 2025 Apr;20(4):1020-1056. doi: 10.1038/s41596-024-01084-x. Epub 2024 Dec 9.

本文引用的文献

2
Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning.机器学习助力古老抗菌肽的分子复活。
Cell Host Microbe. 2023 Aug 9;31(8):1260-1274.e6. doi: 10.1016/j.chom.2023.07.001. Epub 2023 Jul 28.
3
Leveraging artificial intelligence in the fight against infectious diseases.利用人工智能对抗传染病。
Science. 2023 Jul 14;381(6654):164-170. doi: 10.1126/science.adh1114. Epub 2023 Jul 13.
8
Advanced delivery systems for peptide antibiotics.肽类抗生素的先进递药系统。
Adv Drug Deliv Rev. 2023 May;196:114733. doi: 10.1016/j.addr.2023.114733. Epub 2023 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验