Suppr超能文献

碲触发形成Te/Fe-NiOOH纳米立方体作为用于全水分解的高效双功能电催化剂。

Tellurium Triggered Formation of Te/Fe-NiOOH Nanocubes as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting.

作者信息

Ibraheem Shumaila, Li Xiuting, Shah Syed Shoaib Ahmad, Najam Tayyaba, Yasin Ghulam, Iqbal Rashid, Hussain Shahid, Ding Weiyuan, Shahzad Farrukh

机构信息

Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.

Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10972-10978. doi: 10.1021/acsami.0c22573. Epub 2021 Feb 27.

Abstract

The electrocatalyzed oxygen and hydrogen evolution reactions (OER/HER) are the key constituents of water splitting toward hydrogen production over electrolysis. The development of stable non-noble nanomaterials as bifunctional OER/HER electrocatalysts is the foremost bottleneck to commercial applications. Herein, the fabrication of Te-modulated FeNiOOH nanocubes (NCs) by a novel tailoring approach is reported, and the doping of Te superbly modulated the local electronic structures of Fe and Ni. The Te/FeNiOOH-NC catalyst displays better mass and electron transfer ability, exposure of plentiful OER/HER edge active centers on the surface, and a modulated electronic structure. Accordingly, the as-made Te/FeNiOOH-NC catalyst reveals robust OER activity (overpotential of 0.22 V@10 mA cm) and HER activity (overpotential of 0.167 V@10 mA cm) in alkaline media. Considerably, this bifunctional catalyst facilitates a high-performance alkaline water electrolyzer with a cell voltage of 1.65 V at 10 mA cm. This strategy opens up a new way for designing and advancing the tellurium dopant nanomaterials for various applications.

摘要

电催化析氧反应(OER)和析氢反应(HER)是电解水制氢的关键组成部分。开发稳定的非贵金属纳米材料作为双功能OER/HER电催化剂是商业应用的首要瓶颈。在此,报道了一种通过新颖的剪裁方法制备Te调制的FeNiOOH纳米立方体(NCs),并且Te的掺杂极好地调制了Fe和Ni的局部电子结构。Te/FeNiOOH-NC催化剂表现出更好的质量和电子转移能力,表面上暴露了大量的OER/HER边缘活性中心,以及调制的电子结构。因此,制备的Te/FeNiOOH-NC催化剂在碱性介质中显示出稳健的OER活性(在10 mA cm时过电位为0.22 V)和HER活性(在10 mA cm时过电位为0.167 V)。值得注意的是,这种双功能催化剂促进了一种高性能碱性水电解槽,在10 mA cm时电池电压为1.65 V。该策略为设计和推进用于各种应用的碲掺杂纳米材料开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验