Hua Sun, Shah Sayyar Ali, Nsang Gabriel Engonga Obiang, Sayyar Rani, Ullah Badshah, Ullah Noor, Khan Naseem, Yuan Aihua, Bin Mohd Yusoff Abd Rashid, Ullah Habib
School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China; Department of Engineering, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
J Colloid Interface Sci. 2025 Feb;679(Pt A):487-495. doi: 10.1016/j.jcis.2024.09.219. Epub 2024 Oct 3.
The development of cost-effective, highly active, and stable electrocatalysts for water splitting to produce green hydrogen is crucial for advancing clean and sustainable energy technologies. Herein, we present an innovative in-situ synthesis of FeOOH nanorods@NiOOH nanosheets on nickel foam (FeOOH@NiOOH/NF) at an unprecedentedly low temperature, resulting in a highly efficient electrocatalyst for overall water splitting. The optimized FeOOH@NiOOH/NF sample, evaluated through time-dependent studies, exhibits exceptional oxygen evolution reaction (OER) performance with a low overpotential of 261 mV at a current density of 20 mA cm, alongside outstanding hydrogen evolution reaction (HER) activity with an overpotential of 150 mV at a current density of 10 mA cm, demonstrating excellent stability in alkaline solution. The water-splitting device featuring FeOOH@NiOOH/NF-2 electrodes achieves a voltage of 1.59 V at a current density of 10 mA cm, rivalling the state-of-the-art RuO/NF||PtC/NF electrode system. Density functional theory (DFT) calculations unveil the efficient functionality of the Fe sites within the FeOOH@NiOOH heterojunction as the active OER catalyst, while the Ni centres are identified as the active HER sites. The enhanced performance of OER and HER is attributed to the tailored electronic structure at the heterojunction, modified magnetic moments of active sites, and increased electron density in the dx-y orbital of Fe. This work provides critical insights into the rational design of advanced electrocatalysts for efficient water splitting.
开发具有成本效益、高活性和稳定性的用于水分解以生产绿色氢气的电催化剂对于推进清洁和可持续能源技术至关重要。在此,我们展示了一种在泡沫镍上原位合成FeOOH纳米棒@NiOOH纳米片(FeOOH@NiOOH/NF)的创新方法,该方法在前所未有的低温下进行,从而得到一种用于整体水分解的高效电催化剂。通过时间依赖性研究评估的优化后的FeOOH@NiOOH/NF样品,在20 mA cm的电流密度下表现出优异的析氧反应(OER)性能,过电位低至261 mV,同时在10 mA cm的电流密度下具有150 mV的过电位,展现出出色的析氢反应(HER)活性,在碱性溶液中表现出优异的稳定性。采用FeOOH@NiOOH/NF-2电极的水分解装置在10 mA cm的电流密度下实现了1.59 V的电压,可与最先进的RuO/NF||PtC/NF电极系统相媲美。密度泛函理论(DFT)计算揭示了FeOOH@NiOOH异质结中Fe位点作为活性OER催化剂的高效功能,而Ni中心被确定为活性HER位点。OER和HER性能的增强归因于异质结处定制的电子结构、活性位点的磁矩改变以及Fe的dx-y轨道中电子密度的增加。这项工作为合理设计用于高效水分解的先进电催化剂提供了关键见解。