Suppr超能文献

AlignSeg:特征对齐分割网络。

AlignSeg: Feature-Aligned Segmentation Networks.

作者信息

Huang Zilong, Wei Yunchao, Wang Xinggang, Liu Wenyu, Huang Thomas S, Shi Humphrey

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Jan;44(1):550-557. doi: 10.1109/TPAMI.2021.3062772. Epub 2021 Dec 7.

Abstract

Aggregating features in terms of different convolutional blocks or contextual embeddings has been proven to be an effective way to strengthen feature representations for semantic segmentation. However, most of the current popular network architectures tend to ignore the misalignment issues during the feature aggregation process caused by step-by-step downsampling operations and indiscriminate contextual information fusion. In this paper, we explore the principles in addressing such feature misalignment issues and inventively propose Feature-Aligned Segmentation Networks (AlignSeg). AlignSeg consists of two primary modules, i.e., the Aligned Feature Aggregation (AlignFA) module and the Aligned Context Modeling (AlignCM) module. First, AlignFA adopts a simple learnable interpolation strategy to learn transformation offsets of pixels, which can effectively relieve the feature misalignment issue caused by multi-resolution feature aggregation. Second, with the contextual embeddings in hand, AlignCM enables each pixel to choose private custom contextual information adaptively, making the contextual embeddings be better aligned. We validate the effectiveness of our AlignSeg network with extensive experiments on Cityscapes and ADE20K, achieving new state-of-the-art mIoU scores of 82.6 and 45.95 percent, respectively. Our source code is available at https://github.com/speedinghzl/AlignSeg.

摘要

根据不同的卷积块或上下文嵌入聚合特征已被证明是一种有效的方法,可以加强语义分割的特征表示。然而,当前大多数流行的网络架构往往忽略了在特征聚合过程中由于逐步下采样操作和不加区分的上下文信息融合而导致的特征错位问题。在本文中,我们探索了解决此类特征错位问题的原理,并创造性地提出了特征对齐分割网络(AlignSeg)。AlignSeg由两个主要模块组成,即对齐特征聚合(AlignFA)模块和对齐上下文建模(AlignCM)模块。首先,AlignFA采用一种简单的可学习插值策略来学习像素的变换偏移,这可以有效地缓解多分辨率特征聚合导致的特征错位问题。其次,借助上下文嵌入,AlignCM使每个像素能够自适应地选择私有定制上下文信息,从而使上下文嵌入更好地对齐。我们通过在Cityscapes和ADE20K上进行的大量实验验证了我们的AlignSeg网络的有效性,分别达到了82.6%和45.95%的新的最优平均交并比分数。我们的源代码可在https://github.com/speedinghzl/AlignSeg获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验