Suppr超能文献

HDB-Net:用于病变光学相干断层扫描(OCT)图像视网膜层分割的分层双分支网络。

HDB-Net: hierarchical dual-branch network for retinal layer segmentation in diseased OCT images.

作者信息

Chen Yu, Zhang XueHe, Yang Jiahui, Han Gang, Zhang He, Lai MingZhu, Zhao Jie

机构信息

The School of Mechatronics Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China.

The School of Mathematics and Statistics, Hainan Normal University, Haikou, Hainan 571158, China.

出版信息

Biomed Opt Express. 2024 Aug 19;15(9):5359-5383. doi: 10.1364/BOE.530469. eCollection 2024 Sep 1.

Abstract

Optical coherence tomography (OCT) retinal layer segmentation is a critical procedure of the modern ophthalmic process, which can be used for diagnosis and treatment of diseases such as diabetic macular edema (DME) and multiple sclerosis (MS). Due to the difficulties of low OCT image quality, highly similar retinal interlayer morphology, and the uncertain presence, shape and size of lesions, the existing algorithms do not perform well. In this work, we design an HDB-Net network for retinal layer segmentation in diseased OCT images, which solves this problem by combining global and detailed features. First, the proposed network uses a Swin transformer and Res50 as a parallel backbone network, combined with the pyramid structure in UperNet, to extract global context and aggregate multi-scale information from images. Secondly, a feature aggregation module (FAM) is designed to extract global context information from the Swin transformer and local feature information from ResNet by introducing mixed attention mechanism. Finally, the boundary awareness and feature enhancement module (BA-FEM) is used to extract the retinal layer boundary information and topological order from the low-resolution features of the shallow layer. Our approach has been validated on two public datasets, and Dice scores were 87.61% and 92.44, respectively, both outperforming other state-of-the-art technologies.

摘要

光学相干断层扫描(OCT)视网膜层分割是现代眼科诊疗过程中的关键步骤,可用于诊断和治疗诸如糖尿病性黄斑水肿(DME)和多发性硬化症(MS)等疾病。由于OCT图像质量低、视网膜层间形态高度相似以及病变的存在、形状和大小不确定等困难,现有算法表现不佳。在这项工作中,我们设计了一种用于病变OCT图像视网膜层分割的HDB-Net网络,该网络通过结合全局和细节特征来解决这一问题。首先,所提出的网络使用Swin变压器和Res50作为并行主干网络,结合UperNet中的金字塔结构,以提取全局上下文并汇总来自图像的多尺度信息。其次,设计了一个特征聚合模块(FAM),通过引入混合注意力机制从Swin变压器中提取全局上下文信息,并从ResNet中提取局部特征信息。最后,使用边界感知和特征增强模块(BA-FEM)从浅层的低分辨率特征中提取视网膜层边界信息和拓扑顺序。我们的方法在两个公共数据集上得到了验证,Dice分数分别为87.61%和92.44,均优于其他现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8177/11407236/0d4ccaa5f5c1/boe-15-9-5359-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验