Suppr超能文献

用于图像到图像翻译的互补、异构和对抗网络。

Complementary, Heterogeneous and Adversarial Networks for Image-to-Image Translation.

作者信息

Gao Fei, Xu Xingxin, Yu Jun, Shang Meimei, Li Xiang, Tao Dacheng

出版信息

IEEE Trans Image Process. 2021;30:3487-3498. doi: 10.1109/TIP.2021.3061286. Epub 2021 Mar 11.

Abstract

Image-to-image translation is to transfer images from a source domain to a target domain. Conditional Generative Adversarial Networks (GANs) have enabled a variety of applications. Initial GANs typically conclude one single generator for generating a target image. Recently, using multiple generators has shown promising results in various tasks. However, generators in these works are typically of homogeneous architectures. In this paper, we argue that heterogeneous generators are complementary to each other and will benefit the generation of images. By heterogeneous, we mean that generators are of different architectures, focus on diverse positions, and perform over multiple scales. To this end, we build two generators by using a deep U-Net and a shallow residual network, respectively. The former concludes a series of down-sampling and up-sampling layers, which typically have large perception field and great spatial locality. In contrast, the residual network has small perceptual fields and works well in characterizing details, especially textures and local patterns. Afterwards, we use a gated fusion network to combine these two generators for producing a final output. The gated fusion unit automatically induces heterogeneous generators to focus on different positions and complement each other. Finally, we propose a novel approach to integrate multi-level and multi-scale features in the discriminator. This multi-layer integration discriminator encourages generators to produce realistic details from coarse to fine scales. We quantitatively and qualitatively evaluate our model on various benchmark datasets. Experimental results demonstrate that our method significantly improves the quality of transferred images, across a variety of image-to-image translation tasks. We have made our code and results publicly available: http://aiart.live/chan/.

摘要

图像到图像的翻译是将图像从源域转移到目标域。条件生成对抗网络(GAN)已实现了多种应用。最初的GAN通常只有一个用于生成目标图像的生成器。最近,使用多个生成器在各种任务中显示出了有前景的结果。然而,这些作品中的生成器通常具有相同的架构。在本文中,我们认为异构生成器相互补充,将有利于图像生成。所谓异构,是指生成器具有不同的架构,关注不同的位置,并在多个尺度上执行。为此,我们分别使用深度U-Net和浅层残差网络构建了两个生成器。前者包含一系列下采样和上采样层,通常具有较大的感知野和良好的空间局部性。相比之下,残差网络的感知野较小,在表征细节,特别是纹理和局部模式方面表现良好。之后,我们使用门控融合网络将这两个生成器组合起来以产生最终输出。门控融合单元自动引导异构生成器关注不同位置并相互补充。最后,我们提出了一种在判别器中集成多级和多尺度特征的新方法。这种多层集成判别器鼓励生成器从粗到细尺度生成逼真的细节。我们在各种基准数据集上对我们的模型进行了定量和定性评估。实验结果表明,我们的方法在各种图像到图像的翻译任务中显著提高了转移图像的质量。我们已将代码和结果公开:http://aiart.live/chan/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验