School of Medicine, University of Catania, Catania, Italy.
Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy; INFN - Laboratori Nazionali del Sud, Catania, Italy.
Diabetes Res Clin Pract. 2021 Apr;174:108722. doi: 10.1016/j.diabres.2021.108722. Epub 2021 Feb 27.
The effective identification of individuals with early dysglycemia status is key to reduce the incidence of type 2 diabetes. We develop and validate a novel zero-cost tool that significantly simplifies the screening of undiagnosed dysglycemia.
We use NHANES cross-sectional data over 10 years (2007-2016) to derive an equation that links non-laboratory exposure variables to the possible presence of undetected dysglycemia. For the first time, we adopt a novel artificial intelligence approach based on the Darwinian evolutionary theory to analyze health data. We collected data for 47 variables.
Age and waist circumference are the only variables required to use the model. To identify undetected dysglycemia, we obtain an area under the curve (AUC) of 75.3%. Sensitivity and specificity are 0.65 and 0.73 by using the optimal threshold value determined from external validation data.
The use of uniquely two variables allows to obtain a zero-cost screening tool of analogous precision than that of more complex tools widely adopted in the literature. The newly developed tool has clinical use as it significantly simplifies the screening of dysglycemia. Furthermore, we suggest that the definition of an age-related waist circumference cut-off might help to improve existing diabetes risk factors.
有效识别早期糖代谢异常个体是降低 2 型糖尿病发病率的关键。我们开发并验证了一种新颖的零成本工具,可显著简化未诊断糖代谢异常的筛查。
我们使用 NHANES 跨越 10 年(2007-2016 年)的横断面数据,得出一个将非实验室暴露变量与未检出的糖代谢异常可能存在联系的方程。我们首次采用基于达尔文进化理论的新型人工智能方法来分析健康数据。我们收集了 47 个变量的数据。
年龄和腰围是使用模型所需的唯一变量。为了识别未检出的糖代谢异常,我们得到了 75.3%的曲线下面积(AUC)。使用外部验证数据确定的最佳阈值,灵敏度和特异性分别为 0.65 和 0.73。
仅使用两个独特变量,就可以获得与文献中广泛使用的更复杂工具具有类似精度的零成本筛查工具。新开发的工具具有临床用途,因为它显著简化了糖代谢异常的筛查。此外,我们建议定义与年龄相关的腰围切点可能有助于改善现有的糖尿病危险因素。