Suppr超能文献

从 VAERS 报告中关于流感疫苗接种后不良事件的注释以及与吉兰-巴雷综合征相关的注释中吸取的教训。

Lessons learned from annotation of VAERS reports on adverse events following influenza vaccination and related to Guillain-Barré syndrome.

机构信息

McWilliams School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA.

Department of AI and Informatics, Mayo Clinic, Jacksonville, FL, USA.

出版信息

BMC Med Inform Decis Mak. 2024 Jan 5;23(Suppl 4):298. doi: 10.1186/s12911-023-02374-2.

Abstract

BACKGROUND

Vaccine Adverse Events ReportingSystem (VAERS) is a promising resource of tracking adverse events following immunization. Medical Dictionary for Regulatory Activities (MedDRA) terminology used for coding adverse events in VAERS reports has several limitations. We focus on developing an automated system for semantic extraction of adverse events following vaccination and their temporal relationships for a better understanding of VAERS data and its integration into other applications. The aim of the present studyis to summarize the lessons learned during the initial phase of this project in annotating adverse events following influenza vaccination and related to Guillain-Barré syndrome (GBS). We emphasize on identifying the limitations of VAERS and MedDRA.

RESULTS

We collected 282 VAERS reports documented between 1990 and 2016 and shortlisted those with at least 1,100 characters in the report. We used a subset of 50 reports for the preliminary investigation and annotated all adverse events following influenza vaccination by mapping to representative MedDRA terms. Associated time expressions were annotated when available. We used 16 System Organ Class (SOC) level MedDRA terms to map GBS related adverse events and expanded some SOC terms to Lowest Level Terms (LLT) for granular representation. We annotated three broad categories of events such as problems, clinical investigations, and treatments/procedures. The inter-annotator agreement of events achieved was 86%. Incomplete reports, typographical errors, lack of clarity and coherence, repeated texts, unavailability of associated temporal information, difficulty to interpret due to incorrect grammar, use of generalized terms to describe adverse events / symptoms, uncommon abbreviations, difficulty annotating multiple events with a conjunction / common phrase, irrelevant historical events and coexisting events were some of the challenges encountered. Some of the limitations we noted are in agreement with previous reports.

CONCLUSIONS

We reported the challenges encountered and lessons learned during annotation of adverse events in VAERS reports following influenza vaccination and related to GBS. Though the challenges may be due to the inevitable limitations of public reporting systems and widely reported limitations of MedDRA, we emphasize the need to understand these limitations and extraction of other supportive information for a better understanding of adverse events following vaccination.

摘要

背景

疫苗不良事件报告系统(VAERS)是一个有前途的资源,可用于跟踪接种疫苗后的不良事件。VAERS 报告中用于编码不良事件的医疗监管活动用医学词典(MedDRA)术语存在一些局限性。我们专注于开发一种自动系统,用于对疫苗接种后不良事件及其时间关系进行语义提取,以更好地理解 VAERS 数据及其与其他应用程序的整合。本研究的目的是总结在对流感疫苗接种后和与格林-巴利综合征(GBS)相关的不良事件进行注释的项目初始阶段所获得的经验教训。我们强调识别 VAERS 和 MedDRA 的局限性。

结果

我们收集了 1990 年至 2016 年期间的 282 份 VAERS 报告,并从中筛选出报告中至少有 1100 个字符的报告。我们使用 50 份报告的子集进行初步调查,并通过映射到代表性的 MedDRA 术语来注释所有流感疫苗接种后的不良事件。在可用的情况下,注释相关的时间表达。我们使用 16 个系统器官类别(SOC)级别的 MedDRA 术语来映射与 GBS 相关的不良事件,并将一些 SOC 术语扩展到最低级别术语(LLT)以进行粒度表示。我们注释了三个广泛的事件类别,例如问题、临床调查和治疗/程序。事件的注释者间一致性达到 86%。遇到的挑战包括不完整的报告、打字错误、缺乏清晰度和连贯性、重复的文本、无法获得相关的时间信息、由于语法不正确而难以解释、使用通用术语来描述不良事件/症状、不常见的缩写、难以用连词/常用短语注释多个事件、不相关的历史事件和共存事件等。我们注意到的一些局限性与之前的报告一致。

结论

我们报告了在对流感疫苗接种后和与 GBS 相关的 VAERS 报告中的不良事件进行注释时遇到的挑战和经验教训。虽然这些挑战可能是由于公共报告系统不可避免的局限性和广泛报道的 MedDRA 局限性造成的,但我们强调需要理解这些局限性并提取其他支持信息,以更好地理解疫苗接种后的不良事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e6c/10770878/2e34b735affe/12911_2023_2374_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验