Suppr超能文献

为免疫疗法助力:靶向代谢途径。

Fueling the Revolution: Targeting Metabolism to Enhance Immunotherapy.

机构信息

Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

出版信息

Cancer Immunol Res. 2021 Mar;9(3):255-260. doi: 10.1158/2326-6066.CIR-20-0791.

Abstract

The success of immune-checkpoint blockade and chimeric antigen receptor (CAR) T cell therapies has established the remarkable capacity of the immune system to fight cancer. Over the past several years, it has become clear that immune cell responses to cancer are critically dependent upon metabolic programs that are specific to both immune cell type and function. Metabolic features of cancer cells and the tumor microenvironment impose constraints on immune cell metabolism that can favor immunosuppressive phenotypes and block antitumor responses. Advances in both preclinical and clinical studies have demonstrated that metabolic interventions can dramatically enhance the efficacy of immune-based therapies for cancer. As such, understanding the metabolic requirements of immune cells in the tumor microenvironment, as well as the limitations imposed therein, can have significant benefits for informing both current practice and future research in cancer immunotherapy.

摘要

免疫检查点阻断和嵌合抗原受体 (CAR) T 细胞疗法的成功确立了免疫系统对抗癌症的显著能力。在过去的几年中,人们已经清楚地认识到,免疫细胞对癌症的反应严重依赖于免疫细胞类型和功能特有的代谢程序。癌细胞和肿瘤微环境的代谢特征对免疫细胞代谢施加了限制,这些限制有利于免疫抑制表型并阻止抗肿瘤反应。临床前和临床研究的进展表明,代谢干预可以显著增强免疫疗法治疗癌症的疗效。因此,了解肿瘤微环境中免疫细胞的代谢需求以及其中的限制因素,对于为癌症免疫治疗的当前实践和未来研究提供信息具有重要意义。

相似文献

1
Fueling the Revolution: Targeting Metabolism to Enhance Immunotherapy.
Cancer Immunol Res. 2021 Mar;9(3):255-260. doi: 10.1158/2326-6066.CIR-20-0791.
2
NF-κB in the New Era of Cancer Therapy.
Trends Cancer. 2020 Aug;6(8):677-687. doi: 10.1016/j.trecan.2020.04.003. Epub 2020 May 11.
3
Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential.
Front Immunol. 2021 Mar 30;12:652160. doi: 10.3389/fimmu.2021.652160. eCollection 2021.
5
Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors.
Cancer Cell. 2019 Nov 11;36(5):471-482. doi: 10.1016/j.ccell.2019.09.006.
6
HLA-G/LILRBs: A Cancer Immunotherapy Challenge.
Trends Cancer. 2021 May;7(5):389-392. doi: 10.1016/j.trecan.2021.01.004. Epub 2021 Feb 6.
8
CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape.
Front Immunol. 2020 Jun 17;11:1109. doi: 10.3389/fimmu.2020.01109. eCollection 2020.
9
Nanoparticles That Reshape the Tumor Milieu Create a Therapeutic Window for Effective T-cell Therapy in Solid Malignancies.
Cancer Res. 2018 Jul 1;78(13):3718-3730. doi: 10.1158/0008-5472.CAN-18-0306. Epub 2018 May 14.

引用本文的文献

1
Prognostic value of the triglyceride-glucose index in advanced gastric cancer: A call for further exploration.
World J Gastroenterol. 2025 Apr 21;31(15):104574. doi: 10.3748/wjg.v31.i15.104574.
2
CRISPR/Cas9-mediated SHP-1-knockout T cells combined with simvastatin enhances anti-tumor activity in humanized-PDX HCC model.
iScience. 2025 Mar 22;28(4):112266. doi: 10.1016/j.isci.2025.112266. eCollection 2025 Apr 18.
3
Increased fatty acid delivery by tumor endothelium promotes metastatic outgrowth.
JCI Insight. 2025 Apr 8;10(9). doi: 10.1172/jci.insight.187531. eCollection 2025 May 8.
4
Acute Myeloid Leukemia in Older Patients: From New Biological Insights to Targeted Therapies.
Curr Oncol. 2024 Oct 24;31(11):6632-6658. doi: 10.3390/curroncol31110490.
5
Unlocking the potential of immunotherapy in platinum-resistant ovarian cancer: rationale, challenges, and novel strategies.
Cancer Drug Resist. 2024 Oct 15;7:39. doi: 10.20517/cdr.2024.67. eCollection 2024.
7
Challenges in validation of combination treatment strategies for CRC using patient-derived organoids.
J Exp Clin Cancer Res. 2024 Sep 11;43(1):259. doi: 10.1186/s13046-024-03173-x.
9
Regulation of fatty acid delivery to metastases by tumor endothelium.
bioRxiv. 2024 Apr 3:2024.04.02.587724. doi: 10.1101/2024.04.02.587724.

本文引用的文献

1
Disturbed mitochondrial dynamics in CD8 TILs reinforce T cell exhaustion.
Nat Immunol. 2020 Dec;21(12):1540-1551. doi: 10.1038/s41590-020-0793-3. Epub 2020 Oct 5.
2
Cancer SLC43A2 alters T cell methionine metabolism and histone methylation.
Nature. 2020 Sep;585(7824):277-282. doi: 10.1038/s41586-020-2682-1. Epub 2020 Sep 2.
3
IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression.
Cell. 2020 Sep 3;182(5):1252-1270.e34. doi: 10.1016/j.cell.2020.07.038. Epub 2020 Aug 19.
4
Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy.
Cell Rep. 2020 Jul 7;32(1):107848. doi: 10.1016/j.celrep.2020.107848.
5
Metabolism of immune cells in cancer.
Nat Rev Cancer. 2020 Sep;20(9):516-531. doi: 10.1038/s41568-020-0273-y. Epub 2020 Jul 6.
7
Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8 T cell stemness and antitumor immunity.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6047-6055. doi: 10.1073/pnas.1920413117. Epub 2020 Mar 2.
8
CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors.
Nat Immunol. 2020 Mar;21(3):298-308. doi: 10.1038/s41590-019-0589-5. Epub 2020 Feb 17.
9
Enhanced Lipid Accumulation and Metabolism Are Required for the Differentiation and Activation of Tumor-Associated Macrophages.
Cancer Res. 2020 Apr 1;80(7):1438-1450. doi: 10.1158/0008-5472.CAN-19-2994. Epub 2020 Feb 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验