Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA.
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
J Synchrotron Radiat. 2021 Mar 1;28(Pt 2):650-665. doi: 10.1107/S1600577520016173. Epub 2021 Feb 25.
Two new macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source II, FMX and AMX, opened for general user operation in February 2017 [Schneider et al. (2013). J. Phys. Conf. Ser. 425, 012003; Fuchs et al. (2014). J. Phys. Conf. Ser. 493, 012021; Fuchs et al. (2016). AIP Conf. Proc. SRI2015, 1741, 030006]. FMX, the micro-focusing Frontier MX beamline in sector 17-ID-2 at NSLS-II, covers a 5-30 keV photon energy range and delivers a flux of 4.0 × 10 photons s at 1 Å into a 1 µm × 1.5 µm to 10 µm × 10 µm (V × H) variable focus, expected to reach 5 × 10 photons s at final storage-ring current. This flux density surpasses most MX beamlines by nearly two orders of magnitude. The high brightness and microbeam capability of FMX are focused on solving difficult crystallographic challenges. The beamline's flexible design supports a wide range of structure determination methods - serial crystallography on micrometre-sized crystals, raster optimization of diffraction from inhomogeneous crystals, high-resolution data collection from large-unit-cell crystals, room-temperature data collection for crystals that are difficult to freeze and for studying conformational dynamics, and fully automated data collection for sample-screening and ligand-binding studies. FMX's high dose rate reduces data collection times for applications like serial crystallography to minutes rather than hours. With associated sample lifetimes as short as a few milliseconds, new rapid sample-delivery methods have been implemented, such as an ultra-high-speed high-precision piezo scanner goniometer [Gao et al. (2018). J. Synchrotron Rad. 25, 1362-1370], new microcrystal-optimized micromesh well sample holders [Guo et al. (2018). IUCrJ, 5, 238-246] and highly viscous media injectors [Weierstall et al. (2014). Nat. Commun. 5, 3309]. The new beamline pushes the frontier of synchrotron crystallography and enables users to determine structures from difficult-to-crystallize targets like membrane proteins, using previously intractable crystals of a few micrometres in size, and to obtain quality structures from irregular larger crystals.
两个新的大分子晶体学(MX)光束线在国家同步辐射光源二,FMX 和 AMX,于 2017 年 2 月开始供普通用户使用[施耐德等人。(2013)。J. Phys. Conf. Ser. 425, 012003;Fuchs 等人。(2014)。J. Phys. Conf. Ser. 493, 012021;Fuchs 等人。(2016)。AIP Conf. Proc. SRI2015, 1741, 030006]。FMX,在 NSLS-II 的 17-ID-2 扇区的微聚焦前沿 MX 光束线,覆盖 5-30keV 光子能量范围,并在 1Å 处将通量为 4.0×10 光子 s 聚焦到 1μm×1.5μm 到 10μm×10μm(V×H)可变焦点,预计在最终存储环电流下达到 5×10 光子 s。这种通量密度比大多数 MX 光束线高出近两个数量级。FMX 的高亮度和微束能力专注于解决困难的晶体学挑战。光束线的灵活设计支持广泛的结构测定方法 - 微晶体的连续晶体学,非均匀晶体的衍射光栅优化,大单元晶体的高分辨率数据收集,难以冻结的晶体的室温数据收集和构象动力学研究,以及用于样品筛选和配体结合研究的全自动数据收集。FMX 的高剂量率将连续晶体学等应用的采集时间从几小时缩短到几分钟。由于相关样品寿命短至几毫秒,已经实施了新的快速样品传输方法,例如超高速度高精度压电扫描仪测角仪[Gao 等人。(2018)。J. Synchrotron Rad. 25, 1362-1370],新的微晶体优化微网孔样品架[Guo 等人。(2018)。IUCrJ, 5, 238-246]和高粘性介质注射器[Weierstall 等人。(2014)。Nat. Commun. 5, 3309]。新的光束线推动了同步辐射晶体学的前沿,使用以前难以处理的几微米大小的晶体,使用户能够从难以结晶的靶标(如膜蛋白)确定结构,并从不规则的较大晶体中获得高质量的结构。