Suppr超能文献

BioMAX——马克斯·四型实验室的第一条大分子晶体学光束线。

BioMAX - the first macromolecular crystallography beamline at MAX IV Laboratory.

作者信息

Ursby Thomas, Åhnberg Karl, Appio Roberto, Aurelius Oskar, Barczyk Artur, Bartalesi Antonio, Bjelčić Monika, Bolmsten Fredrik, Cerenius Yngve, Doak R Bruce, Eguiraun Mikel, Eriksson Thomas, Friel Ross J, Gorgisyan Ishkhan, Gross Andrea, Haghighat Vahid, Hennies Franz, Jagudin Elmir, Norsk Jensen Brian, Jeppsson Tobias, Kloos Marco, Lidon-Simon Julio, de Lima Gustavo M A, Lizatovic Robert, Lundin Magnus, Milan-Otero Antonio, Milas Mirko, Nan Jie, Nardella Alberto, Rosborg Anders, Shilova Anastasya, Shoeman Robert L, Siewert Frank, Sondhauss Peter, Talibov Vladimir O, Tarawneh Hamed, Thånell Johan, Thunnissen Marjolein, Unge Johan, Ward Christopher, Gonzalez Ana, Mueller Uwe

机构信息

MAX IV Laboratory, Lund University, PO Box 118, S-221 00 Lund, Sweden.

Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.

出版信息

J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1415-1429. doi: 10.1107/S1600577520008723. Epub 2020 Aug 5.

Abstract

BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi-bend achromat storage ring. Due to the low-emittance storage ring, BioMAX has a parallel, high-intensity X-ray beam, even when focused down to 20 µm × 5 µm using the bendable focusing mirrors. The beam is tunable in the energy range 5-25 keV using the in-vacuum undulator and the horizontally deflecting double-crystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high-capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state-of-the-art instrumentation, a high degree of automation, a user-friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high-viscosity extruder injector or the MD3 as a fixed-target scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 µm × 1 µm beam focus and a flux up to 10 photons s with main applications in serial crystallography, room-temperature structure determinations and time-resolved experiments.

摘要

BioMAX是MAX IV实验室3 GeV储存环上的第一条大分子晶体学光束线,该储存环是首个投入运行的多弯铁消色差储存环。由于储存环的发射度低,即使使用可弯曲聚焦镜将光束聚焦至20 µm×5 µm,BioMAX仍能产生平行的高强度X射线束。利用真空内波荡器和水平偏转双晶单色仪,光束能量可在5 - 25 keV范围内调节。BioMAX配备了MD3衍射仪、ISARA大容量样品更换器和EIGER 16M混合像素探测器。BioMAX的数据收集由新开发的MXCuBE3图形用户界面控制,样品跟踪由ISPyB处理。计算基础设施包括MAX IV和隆德大学超级计算中心LUNARC的数据存储和处理。凭借最先进的仪器设备、高度自动化、用户友好的控制系统界面和远程操作,BioMAX为大多数大分子晶体学实验提供了出色的设施。使用高粘度挤出机注射器或MD3作为固定靶扫描器的串行晶体学已经实现。MAX IV实验室的串行晶体学活动将在微聚焦光束线MicroMAX于2022年投入运行时进一步发展。MicroMAX将具有1 µm×1 µm的光束聚焦和高达10 photons s的通量,主要应用于串行晶体学、室温结构测定和时间分辨实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/364a/7467343/847d6337b187/s-27-01415-fig1.jpg

相似文献

1
BioMAX - the first macromolecular crystallography beamline at MAX IV Laboratory.
J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1415-1429. doi: 10.1107/S1600577520008723. Epub 2020 Aug 5.
2
Current status and future opportunities for serial crystallography at MAX IV Laboratory.
J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1095-1102. doi: 10.1107/S1600577520008735. Epub 2020 Aug 21.
3
Upgrade of BL-5C as a highly automated macromolecular crystallography beamline at Pohang Light Source II.
J Synchrotron Radiat. 2021 Mar 1;28(Pt 2):602-608. doi: 10.1107/S1600577521000588. Epub 2021 Feb 5.
4
ID30A-3 (MASSIF-3) - a beamline for macromolecular crystallography at the ESRF with a small intense beam.
J Synchrotron Radiat. 2020 May 1;27(Pt 3):844-851. doi: 10.1107/S1600577520004002. Epub 2020 Apr 29.
5
BL-11C Micro-MX: a high-flux microfocus macromolecular-crystallography beamline for micrometre-sized protein crystals at Pohang Light Source II.
J Synchrotron Radiat. 2021 Jul 1;28(Pt 4):1210-1215. doi: 10.1107/S1600577521004355. Epub 2021 Jun 1.
6
Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the ALBA synchrotron.
J Synchrotron Radiat. 2014 Jul;21(Pt 4):679-89. doi: 10.1107/S160057751400825X. Epub 2014 May 20.
7
AMX - the highly automated macromolecular crystallography (17-ID-1) beamline at the NSLS-II.
J Synchrotron Radiat. 2022 Nov 1;29(Pt 6):1480-1494. doi: 10.1107/S1600577522009377. Epub 2022 Oct 21.
8
FMX - the Frontier Microfocusing Macromolecular Crystallography Beamline at the National Synchrotron Light Source II.
J Synchrotron Radiat. 2021 Mar 1;28(Pt 2):650-665. doi: 10.1107/S1600577520016173. Epub 2021 Feb 25.
9
ID23-2: an automated and high-performance microfocus beamline for macromolecular crystallography at the ESRF.
J Synchrotron Radiat. 2022 Mar 1;29(Pt 2):581-590. doi: 10.1107/S1600577522000984. Epub 2022 Feb 22.
10

引用本文的文献

1
Off-target binding of the histone deacetylase inhibitor vorinostat to carbonic anhydrase II and IX.
Acta Crystallogr F Struct Biol Commun. 2025 Sep 1;81(Pt 9):388-397. doi: 10.1107/S2053230X25007447. Epub 2025 Aug 26.
2
Status and perspective of protein crystallography at the first multi-bend achromat based synchrotron MAX IV.
J Synchrotron Radiat. 2025 May 1;32(Pt 3):779-791. doi: 10.1107/S1600577525002255. Epub 2025 Apr 4.
3
Unraveling the molecular mechanism of polysaccharide lyases for efficient alginate degradation.
Nat Commun. 2025 Mar 18;16(1):2670. doi: 10.1038/s41467-025-56754-5.
7
Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules.
Acta Crystallogr D Struct Biol. 2025 Jan 1;81(Pt 1):22-37. doi: 10.1107/S2059798324011987.
10
A conserved juxtamembrane motif in plant NFR5 receptors is essential for root nodule symbiosis.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2405671121. doi: 10.1073/pnas.2405671121. Epub 2024 Nov 4.

本文引用的文献

1
Current status and future opportunities for serial crystallography at MAX IV Laboratory.
J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1095-1102. doi: 10.1107/S1600577520008735. Epub 2020 Aug 21.
2
FragMAX: the fragment-screening platform at the MAX IV Laboratory.
Acta Crystallogr D Struct Biol. 2020 Aug 1;76(Pt 8):771-777. doi: 10.1107/S205979832000889X. Epub 2020 Jul 27.
3
F2X-Universal and F2X-Entry: Structurally Diverse Compound Libraries for Crystallographic Fragment Screening.
Structure. 2020 Jun 2;28(6):694-706.e5. doi: 10.1016/j.str.2020.04.019. Epub 2020 May 14.
4
A fungal family of lytic polysaccharide monooxygenase-like copper proteins.
Nat Chem Biol. 2020 Mar;16(3):345-350. doi: 10.1038/s41589-019-0438-8. Epub 2020 Jan 13.
5
Well-based crystallization of lipidic cubic phase microcrystals for serial X-ray crystallography experiments.
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):937-946. doi: 10.1107/S2059798319012695.
6
Multiplicity conversion based on intramolecular triplet-to-singlet energy transfer.
Sci Adv. 2019 Sep 20;5(9):eaaw5978. doi: 10.1126/sciadv.aaw5978. eCollection 2019 Sep.
7
MXCuBE2: the dawn of MXCuBE Collaboration.
J Synchrotron Radiat. 2019 Mar 1;26(Pt 2):393-405. doi: 10.1107/S1600577519001267. Epub 2019 Feb 22.
8
Commissioning and first-year operational results of the MAX IV 3 GeV ring.
J Synchrotron Radiat. 2018 Sep 1;25(Pt 5):1291-1316. doi: 10.1107/S1600577518008111. Epub 2018 Aug 27.
9
FemtoMAX - an X-ray beamline for structural dynamics at the short-pulse facility of MAX IV.
J Synchrotron Radiat. 2018 Mar 1;25(Pt 2):570-579. doi: 10.1107/S1600577517017660. Epub 2018 Feb 14.
10
Protein microcrystallography using synchrotron radiation.
IUCrJ. 2017 Aug 8;4(Pt 5):529-539. doi: 10.1107/S2052252517008193. eCollection 2017 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验