Suppr超能文献

用于高效制氢的双功能单原子锰位点

Bifunctional single-atomic Mn sites for energy-efficient hydrogen production.

作者信息

Peng Xianyun, Hou Junrong, Mi Yuying, Sun Jiaqiang, Qi Gaocan, Qin Yongji, Zhang Shusheng, Qiu Yuan, Luo Jun, Liu Xijun

机构信息

Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China.

出版信息

Nanoscale. 2021 Mar 12;13(9):4767-4773. doi: 10.1039/d0nr09104a.

Abstract

The electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand challenge due to the sluggish kinetics of the oxygen evolution reaction (OER) in electrolyzing water. Herein, we present a single atomic Mn site anchored on a boron nitrogen co-doped carbon nanotube array (Mn-SA/BNC), which is perfectly combined with the hydrazine electrooxidation reaction (HzOR) boosted water electrolysis concept. The obtained catalyst achieves 51 mV overpotential at the current density of -10 mA cm-2 for the cathodic HER and 132 mV versus the reversible hydrogen electrode for HzOR, respectively. Besides, in a two-electrode overall hydrazine splitting (OHzS) system, the Mn-SA/BNC catalyst only needs a cell voltage of only 0.41 V to output 10 mA cm-1, with strong durability and nearly 100% faradaic efficiency for H2 production. This work highlights a low-cost and high-efficiency energy-saving H2 production pathway.

摘要

用于制氢的电催化析氢反应(HER)对于未来的可再生和清洁能源技术至关重要。然而,由于水电解中析氧反应(OER)的动力学缓慢,高效筛选节能、低成本且高活性的催化剂仍然是一个巨大的挑战。在此,我们展示了一种锚定在硼氮共掺杂碳纳米管阵列上的单原子锰位点(Mn-SA/BNC),它与肼电氧化反应(HzOR)促进水电解的概念完美结合。所获得的催化剂在阴极HER的电流密度为-10 mA cm-2时实现了51 mV的过电位,对于HzOR相对于可逆氢电极实现了132 mV的过电位。此外,在双电极全肼分解(OHzS)系统中,Mn-SA/BNC催化剂仅需0.41 V的电池电压即可输出10 mA cm-1,具有很强的耐久性且制氢的法拉第效率接近100%。这项工作突出了一种低成本、高效率的节能制氢途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验