Suppr超能文献

随机肽混合物作为在菌血症和肺炎小鼠模型中对抗金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌的安全有效的抗菌剂。

Random Peptide Mixtures as Safe and Effective Antimicrobials against and MRSA in Mouse Models of Bacteremia and Pneumonia.

作者信息

Bennett Richard C, Oh Myung Whan, Kuo Shanny Hsuan, Belo Yael, Maron Bar, Malach Einav, Lin Jingjun, Hayouka Zvi, Lau Gee W

机构信息

Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, United States.

Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.

出版信息

ACS Infect Dis. 2021 Mar 12;7(3):672-680. doi: 10.1021/acsinfecdis.0c00871. Epub 2021 Mar 2.

Abstract

Antibiotic resistance is a daunting challenge in modern medicine, and novel approaches that minimize the emergence of resistant pathogens are desperately needed. Antimicrobial peptides are newer therapeutics that attempt to do this; however, they fall short because of low to moderate antimicrobial activity, low protease stability, susceptibility to resistance development, and high cost of production. The recently developed random peptide mixtures (RPMs) are promising alternatives. RPMs are synthesized by incorporating a defined proportion of two amino acids at each coupling step rather than just one, making them highly variable but still defined in their overall composition, chain length, and stereochemistry. Because RPMs have extreme diversity, it is unlikely that bacteria would be capable of rapidly evolving resistance. However, their efficacy against pathogens in animal models of human infectious diseases remained uncharacterized. Here, we demonstrated that RPMs have strong safety and pharmacokinetic profiles. RPMs rapidly killed both and efficiently and disrupted preformed biofilms by both pathogens. Importantly, RPMs were efficacious against both pathogens in mouse models of bacteremia and acute pneumonia. Our results demonstrate that RPMs are potent broad-spectrum therapeutics against antibiotic-resistant pathogens.

摘要

抗生素耐药性是现代医学中一项艰巨的挑战,因此迫切需要新方法来尽量减少耐药病原体的出现。抗菌肽是尝试解决这一问题的新型疗法;然而,由于其抗菌活性低至中等、蛋白酶稳定性差、易产生耐药性以及生产成本高昂,它们存在不足。最近开发的随机肽混合物(RPMs)是很有前景的替代方案。RPMs是通过在每个偶联步骤中掺入一定比例的两种氨基酸而非仅一种氨基酸来合成的,这使得它们具有高度的变异性,但在整体组成、链长和立体化学方面仍有明确界定。由于RPMs具有极端的多样性,细菌不太可能迅速产生耐药性。然而,它们在人类传染病动物模型中对病原体的疗效尚未得到表征。在此,我们证明了RPMs具有良好的安全性和药代动力学特征。RPMs能迅速有效杀死两种病原体,并破坏这两种病原体预先形成的生物膜。重要的是,在菌血症和急性肺炎小鼠模型中,RPMs对两种病原体均有效。我们的结果表明,RPMs是针对抗生素耐药病原体的强效广谱疗法。

相似文献

1
Random Peptide Mixtures as Safe and Effective Antimicrobials against and MRSA in Mouse Models of Bacteremia and Pneumonia.
ACS Infect Dis. 2021 Mar 12;7(3):672-680. doi: 10.1021/acsinfecdis.0c00871. Epub 2021 Mar 2.
2
Antimicrobial Random Peptide Mixtures Eradicate Biofilms and Inhibit Mouse Models of Infection.
Antibiotics (Basel). 2022 Mar 19;11(3):413. doi: 10.3390/antibiotics11030413.
3
Antimicrobial random peptide cocktails: a new approach to fight pathogenic bacteria.
Chem Commun (Camb). 2019 Feb 12;55(14):2007-2014. doi: 10.1039/c8cc09961h.
5
Microbicidal effects of α- and θ-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa.
Innate Immun. 2015 Jan;21(1):17-29. doi: 10.1177/1753425913514784. Epub 2013 Dec 17.
6
Amphiphilic Dendrimer as Potent Antibacterial against Drug-Resistant Bacteria in Mouse Models of Human Infectious Diseases.
ACS Infect Dis. 2024 Feb 9;10(2):453-466. doi: 10.1021/acsinfecdis.3c00425. Epub 2024 Jan 19.
7
[Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection].
Zhonghua Shao Shang Za Zhi. 2016 Sep 20;32(9):529-35. doi: 10.3760/cma.j.issn.1009-2587.2016.09.004.
8
A cohort study of bacteremic pneumonia: The importance of antibiotic resistance and appropriate initial therapy?
Medicine (Baltimore). 2016 Aug;95(35):e4708. doi: 10.1097/MD.0000000000004708.

引用本文的文献

2
Cell-autonomous innate immunity by proteasome-derived defence peptides.
Nature. 2025 Mar;639(8056):1032-1041. doi: 10.1038/s41586-025-08615-w. Epub 2025 Mar 5.
3
Random antimicrobial peptide mixtures as non-antibiotic antimicrobial agents for cultured meat industry.
Food Chem (Oxf). 2025 Jan 19;10:100240. doi: 10.1016/j.fochms.2025.100240. eCollection 2025 Jun.
6
Impedimetric Bacterial Detection Using Random Antimicrobial Peptide Mixtures.
Sensors (Basel). 2023 Jan 4;23(2):561. doi: 10.3390/s23020561.
7
Advances and perspectives for antimicrobial peptide and combinatory therapies.
Front Bioeng Biotechnol. 2022 Dec 12;10:1051456. doi: 10.3389/fbioe.2022.1051456. eCollection 2022.
8
Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
Microbiol Spectr. 2022 Aug 31;10(4):e0097322. doi: 10.1128/spectrum.00973-22. Epub 2022 Jul 13.
9
Multitargeted anti-infective drugs: resilience to resistance in the antimicrobial resistance era.
Future Drug Discov. 2022 Apr;4(1):FDD73. doi: 10.4155/fdd-2022-0001. Epub 2022 May 5.
10
Pharmacological Evaluation of Synthetic Dominant-Negative Peptides Derived from the Competence-Stimulating Peptide of .
ACS Pharmacol Transl Sci. 2022 Apr 20;5(5):299-305. doi: 10.1021/acsptsci.2c00037. eCollection 2022 May 13.

本文引用的文献

1
Antibacterial lipo-random peptide mixtures exhibit high selectivity and synergistic interactions.
Chem Commun (Camb). 2020 Oct 14;56(80):12053-12056. doi: 10.1039/d0cc04493h. Epub 2020 Sep 9.
2
Two distinct amphipathic peptide antibiotics with systemic efficacy.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19446-19454. doi: 10.1073/pnas.2005540117. Epub 2020 Jul 28.
4
Antimicrobial Resistance in ESKAPE Pathogens.
Clin Microbiol Rev. 2020 May 13;33(3). doi: 10.1128/CMR.00181-19. Print 2020 Jun 17.
5
Staphylococcus aureus Osteomyelitis: Bone, Bugs, and Surgery.
Infect Immun. 2020 Jun 22;88(7). doi: 10.1128/IAI.00932-19.
7
Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia.
J Clin Med. 2020 Jan 19;9(1):275. doi: 10.3390/jcm9010275.
8
Contact lens-related corneal infection: Intrinsic resistance and its compromise.
Prog Retin Eye Res. 2020 May;76:100804. doi: 10.1016/j.preteyeres.2019.100804. Epub 2019 Nov 20.
9
and microbial keratitis.
J Med Microbiol. 2020 Jan;69(1):3-13. doi: 10.1099/jmm.0.001110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验