Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel, Switzerland.
Institute for Nanotechnology (INT) Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe, Germany.
J Org Chem. 2021 Apr 16;86(8):5431-5442. doi: 10.1021/acs.joc.0c03016. Epub 2021 Mar 2.
The two sulfonyl-bridged Geländer helices and are obtained by oxidation of the corresponding sulfide bridged precursors and . Both Geländer structures are fully characterized by NMR, high-resolution mass spectrometry, and optical spectroscopies. X-ray diffraction with a single crystal of provides its solid-state structure. Both Geländer helices and are separated into enantiomers, and their racemizations are monitored by circular dichroism. For , consisting of two equally sized macrocycles, a substantial increase in the enantiomerization barrier is observed upon going from the sulfide to the sulfone, and only a subtle rise is detected for the constitutional isomer with two macrocycles of different size during the same transformation. This results not only in with the highest configurational stability in the series of hitherto investigated Geländer structures but also challenges the so far hypothesized correlations between bridging structures and the Gibbs free energy of enantiomerization. The simulation of the enantiomerization process in the macrocyclic subunits suggests the proximity of the endotopic hydrogens as parameter responsible for the heights of the enantiomerization barrier.
两个磺酰基桥联的 Geländer 螺旋 和 是通过相应的硫化物桥联前体 和 的氧化得到的。这两种 Geländer 结构都通过 NMR、高分辨率质谱和光谱学进行了全面表征。单晶 X 射线衍射提供了 的固态结构。两种 Geländer 螺旋 和 都分离成对映异构体,并通过圆二色性监测其外消旋化。对于 ,由两个大小相等的大环组成,从硫化物到砜化物,对映体异构化的势垒显著增加,而在相同的转化过程中,对于具有两个不同大小大环的构象异构体 ,仅检测到细微的上升。这不仅导致 在迄今为止研究的 Geländer 结构系列中具有最高的构型稳定性,而且对迄今为止假设的桥联结构与对映体异构化吉布斯自由能之间的相关性提出了挑战。在大环亚基中环己烷氢原子的接近性作为决定对映体异构化势垒高度的参数进行了对该对映体化过程的模拟。