Suppr超能文献

基于姿态估计的遮挡行人再识别中可见部件的识别

Identifying Visible Parts via Pose Estimation for Occluded Person Re-Identification.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4624-4634. doi: 10.1109/TNNLS.2021.3059515. Epub 2022 Aug 31.

Abstract

We focus on the occlusion problem in person re-identification (re-id), which is one of the main challenges in real-world person retrieval scenarios. Previous methods on the occluded re-id problem usually assume that only the probes are occluded, thereby removing occlusions by manually cropping. However, this may not always hold in practice. This article relaxes this assumption and investigates a more general occlusion problem, where both the probe and gallery images could be occluded. The key to this challenging problem is depressing the noise information by identifying bodies and occlusions. We propose to incorporate the pose information into the re-id framework, which benefits the model in three aspects. First, it provides the location of the body. We then design a Pose-Masked Feature Branch to make our model focus on the body region only and filter those noise features brought by occlusions. Second, the estimated pose reveals which body parts are visible, giving us a hint to construct more informative person features. We propose a Pose-Embedded Feature Branch to adaptively re-calibrate channel-wise feature responses based on the visible body parts. Third, in testing, the estimated pose indicates which regions are informative and reliable for both probe and gallery images. Then we explicitly split the extracted spatial feature into parts. Only part features from those commonly visible parts are utilized in the retrieval. To better evaluate the performances of the occluded re-id, we also propose a large-scale data set for the occluded re-id with more than 35 000 images, namely Occluded-DukeMTMC. Extensive experiments show our approach surpasses previous methods on the occluded, partial, and non-occluded re-id data sets.

摘要

我们专注于行人再识别(re-id)中的遮挡问题,这是现实世界中行人检索场景中的主要挑战之一。之前关于遮挡 re-id 问题的方法通常假设只有探针被遮挡,从而通过手动裁剪来去除遮挡。然而,在实践中这并不总是成立的。本文放宽了这一假设,并研究了一个更一般的遮挡问题,即探针和图库图像都可能被遮挡。解决这个具有挑战性问题的关键是通过识别身体和遮挡物来抑制噪声信息。我们提出将姿态信息纳入 re-id 框架中,这对模型有三个方面的好处。首先,它提供了身体的位置。然后,我们设计了一个姿态掩蔽特征分支,使我们的模型只关注身体区域,并过滤那些由遮挡带来的噪声特征。其次,估计的姿态揭示了哪些身体部位是可见的,这为我们构建更有信息量的行人特征提供了线索。我们提出了一个姿态嵌入特征分支,根据可见的身体部位自适应地重新校准通道特征的响应。第三,在测试时,估计的姿态指示了探针和图库图像中哪些区域是信息丰富且可靠的。然后我们将提取的空间特征显式地分为几部分。只有那些通常可见的部分的特征才会用于检索。为了更好地评估遮挡 re-id 的性能,我们还提出了一个包含超过 35000 张图像的大规模遮挡 re-id 数据集,即 Occluded-DukeMTMC。大量实验表明,我们的方法在遮挡、部分遮挡和非遮挡 re-id 数据集上都优于以前的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验