Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio, USA.
J Mater Chem B. 2021 Apr 21;9(15):3300-3316. doi: 10.1039/d0tb02958k. Epub 2021 Mar 2.
Amyloid cross-seeding, as a result of direct interaction and co-aggregation between different disease-causative peptides, is considered as a main mechanism for the spread of the overlapping pathology across different cells and tissues between different protein-misfolding diseases (PMDs). Despite the biomedical significance of amyloid cross-seeding in amyloidogenesis, it remains a great challenge to discover amyloid cross-seeding systems and reveal their cross-seeding structures and mechanisms. Herein, we are the first to report that GNNQQNY - a short fragment from yeast prion protein Sup35 - can cross-seed with both amyloid-β (Aβ, associated with Alzheimer's disease) and human islet amyloid polypeptide (hIAPP, associated with type II diabetes) to form β-structure-rich assemblies and to accelerate amyloid fibrillization. Dry, steric β-zippers, formed by the two β-sheets of different amyloid peptides, provide generally interactive and structural motifs to facilitate amyloid cross-seeding. The presence of different steric β-zippers in a variety of GNNQQNY-Aβ and GNNQQNY-hIAPP assemblies also explains amyloid polymorphism. In addition, alteration of steric zipper formation by single-point mutations of GNNQQNY and interactions of GNNQQNY with different Aβ and hIAPP seeds leads to different amyloid cross-seeding efficiencies, further confirming the existence of cross-seeding barriers. This work offers a better structural-based understanding of amyloid cross-seeding mechanisms linked to different PMDs.
淀粉样蛋白交叉成核,是由于不同致病肽之间的直接相互作用和共同聚集,被认为是不同蛋白错误折叠疾病(PMD)之间不同细胞和组织中重叠病理扩散的主要机制。尽管淀粉样蛋白交叉成核在淀粉样蛋白形成过程中有重要的生物学意义,但发现淀粉样蛋白交叉成核系统并揭示其交叉成核结构和机制仍然是一个巨大的挑战。在这里,我们首次报道酵母朊病毒蛋白 Sup35 的短片段 GNNQQNY 可以与淀粉样β(Aβ,与阿尔茨海默病有关)和人胰岛淀粉样多肽(hIAPP,与 2 型糖尿病有关)交叉成核,形成富含β-结构的组装体并加速淀粉样蛋白纤维形成。由不同淀粉样肽的两个β-折叠形成的干燥、立体β-拉链,为淀粉样蛋白交叉成核提供了一般的相互作用和结构基序。不同的立体β-拉链存在于各种 GNNQQNY-Aβ 和 GNNQQNY-hIAPP 组装体中,也解释了淀粉样蛋白的多态性。此外,通过 GNNQQNY 的单点突变改变立体拉链的形成以及 GNNQQNY 与不同 Aβ 和 hIAPP 种子的相互作用导致不同的淀粉样蛋白交叉成核效率,进一步证实了交叉成核障碍的存在。这项工作提供了对与不同 PMD 相关的淀粉样蛋白交叉成核机制的更好的基于结构的理解。