Suppr超能文献

通过主动学习加速具有优异机械性能的沸石结构的发现。

Accelerated Discovery of Zeolite Structures with Superior Mechanical Properties via Active Learning.

机构信息

Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi-do 13120, Republic of Korea.

School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Sangdo-dong, Dongjak-gu, Seoul 06978, Republic of Korea.

出版信息

J Phys Chem Lett. 2021 Mar 11;12(9):2334-2339. doi: 10.1021/acs.jpclett.1c00339. Epub 2021 Mar 2.

Abstract

A Bayesian active learning platform is developed for the accelerated discovery of mechanically superior zeolite structures from more than half a million hypothetical candidates. An initial database containing the mechanical properties of synthesizable zeolites is trained to develop the machine learning regression model. Then, a Bayesian optimization scheme is implemented to identify zeolites with potentially excellent mechanical properties. The newly accumulated database consists of 871 labeled structures, and the uncertainty of the predictive model is reduced by 40% and 58% for the bulk and shear moduli, respectively. The model convergence shows that no further improvement occurs after the 10th iteration of optimizations. The proposed platform is able to discover 23 new zeolite structures that have unprecedented shear moduli; in one case, the shear modulus (127.81 GPa) is 250% higher than the previous data set. The proposed platform accelerates the material discovery process while maximizing computational efficiency and enhancing the predictive accuracy.

摘要

开发了一个贝叶斯主动学习平台,用于从超过 50 万个假设候选物中加速发现机械性能更优的沸石结构。使用初始包含可合成沸石力学性能的数据库来训练机器学习回归模型。然后,实施贝叶斯优化方案来识别具有潜在优异力学性能的沸石。新积累的数据库包含 871 个标记结构,分别使体弹模量和剪切模量的预测模型不确定性降低了 40%和 58%。模型收敛表明,在优化的第 10 次迭代后,不会再有进一步的改进。该平台能够发现 23 种具有前所未有的剪切模量的新型沸石结构;在一种情况下,剪切模量(127.81GPa)比之前的数据集高 250%。该平台在提高预测准确性的同时,加速了材料发现过程,最大限度地提高了计算效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验