Suppr超能文献

使用深度神经网络势预测纯硅沸石的结构性质

Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials.

作者信息

Sours Tyler G, Kulkarni Ambarish R

机构信息

Department of Chemical Engineering, University of California, Davis, Davis, California95616, United States.

出版信息

J Phys Chem C Nanomater Interfaces. 2023 Jan 13;127(3):1455-1463. doi: 10.1021/acs.jpcc.2c08429. eCollection 2023 Jan 26.

Abstract

Machine learning potentials (MLPs) capable of accurately describing complex potential energy surfaces (PESs) have revolutionized the field of multiscale atomistic modeling. In this work, using an extensive density functional theory (DFT) data set (denoted as Si-ZEO22) consisting of 219 unique zeolite topologies (350,000 unique DFT calculations) found in the International Zeolite Association (IZA) database, we have trained a DeePMD-kit MLP to model the dynamics of silica frameworks. The performance of our model is evaluated by calculating various properties that probe the accuracy of the energy and force predictions. This MLP demonstrates impressive agreement with DFT for predicting zeolite structural properties, energy-volume trends, and phonon density of states. Furthermore, our model achieves reasonable predictions for stress-strain relationships without including DFT stress data during training. These results highlight the ability of MLPs to capture the flexibility of zeolite frameworks and motivate further MLP development for nanoporous materials with near- accuracy.

摘要

能够精确描述复杂势能面(PES)的机器学习势(MLP)彻底改变了多尺度原子建模领域。在这项工作中,我们使用了一个由国际沸石协会(IZA)数据库中发现的219种独特沸石拓扑结构(350,000次独特的密度泛函理论(DFT)计算)组成的广泛DFT数据集(表示为Si-ZEO22),训练了一个DeePMD-kit MLP来模拟二氧化硅骨架的动力学。通过计算各种探测能量和力预测准确性的属性来评估我们模型的性能。该MLP在预测沸石结构属性、能量-体积趋势和声子态密度方面与DFT表现出令人印象深刻的一致性。此外,我们的模型在训练过程中不包括DFT应力数据的情况下,对应力-应变关系也能做出合理预测。这些结果突出了MLP捕捉沸石骨架灵活性的能力,并推动了对具有近乎精确性的纳米多孔材料的MLP进一步开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d3c/9885523/f7c99190d97b/jp2c08429_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验