Suppr超能文献

基于压痕测试和原子力显微镜评估芯片上器官用软生物膜的机械性能。

Mechanical Properties of Soft Biological Membranes for Organ-on-a-Chip Assessed by Bulge Test and AFM.

机构信息

Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland.

Laboratory for Bio- and Nano- Instrumentation, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland.

出版信息

ACS Biomater Sci Eng. 2021 Jul 12;7(7):2990-2997. doi: 10.1021/acsbiomaterials.0c00515. Epub 2021 Mar 2.

Abstract

Advanced in vitro models called "organ-on-a-chip" can mimic the specific cellular environment found in various tissues. Many of these models include a thin, sometimes flexible, membrane aimed at mimicking the extracellular matrix (ECM) scaffold of in vivo barriers. These membranes are often made of polydimethylsiloxane (PDMS), a silicone rubber that poorly mimics the chemical and physical properties of the basal membrane. However, the ECM and its mechanical properties play a key role in the homeostasis of a tissue. Here, we report about biological membranes with a composition and mechanical properties similar to those found in vivo. Two types of collagen-elastin (CE) membranes were produced: vitrified and nonvitrified (called "hydrogel membrane"). Their mechanical properties were characterized using the bulge test method. The results were compared using atomic force microscopy (AFM), a standard technique used to evaluate the Young's modulus of soft materials at the nanoscale. Our results show that CE membranes with stiffnesses ranging from several hundred of kPa down to 1 kPa can be produced by tuning the CE ratio, the production mode (vitrified or not), and/or certain parameters such as temperature. The Young's modulus can easily be determined using the bulge test. This method is a robust and reproducible to determine membrane stiffness, even for soft membranes, which are more difficult to assess by AFM. Assessment of the impact of substrate stiffness on the spread of human fibroblasts on these surfaces showed that cell spread is lower on softer surfaces than on stiffer surfaces.

摘要

称为“器官芯片”的先进体外模型可以模拟各种组织中发现的特定细胞环境。这些模型中的许多模型都包含一层薄的、有时是柔性的膜,旨在模拟体内屏障的细胞外基质 (ECM) 支架。这些膜通常由聚二甲基硅氧烷 (PDMS) 制成,PDMS 是一种硅橡胶,不能很好地模拟基膜的化学和物理性质。然而,ECM 及其机械性能在组织的动态平衡中起着关键作用。在这里,我们报告了具有与体内相似组成和机械性能的生物膜。制作了两种类型的胶原弹性蛋白 (CE) 膜:玻璃化和非玻璃化(称为“水凝胶膜”)。使用凸起测试方法对它们的机械性能进行了表征。使用原子力显微镜 (AFM) 比较了结果,AFM 是一种用于在纳米尺度评估软材料杨氏模量的标准技术。我们的结果表明,通过调整 CE 比、生产模式(玻璃化或非玻璃化)以及/或某些参数(如温度),可以生产出杨氏模量从几百 kPa 到 1 kPa 不等的 CE 膜。使用凸起测试可以轻松确定杨氏模量。该方法是一种稳健且可重复的方法,即使对于软膜也可以确定膜的刚度,而软膜更难通过 AFM 进行评估。评估基底刚度对人成纤维细胞在这些表面上扩散的影响表明,在较软的表面上细胞扩散比在较硬的表面上更低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验